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In a 1987 article considering future prospects for

increasing the productivity of software developers, Frederick P.

Brooks identified inherent and arbitrary complexity as two

fundamental properties of software that limit the productivity

gains software developers can expect to achieve.  Dr. Brooks

based his thesis on his experiences leading the design and

development of the original IBM/360 operating system, where he

first encountered the complexity of software systems, and on the

two decades since, during which software engineering research

has improved productivity marginally by addressing those aspects

of software design and development that Dr. Brooks views as

accidents.  In the years since Dr. Brooks’ sage article

appeared, software system design and development has continued

to increase in complexity as computers are applied to more

problems, problems that increasingly involve real-time

requirements and distributed computing.  Complexity, both

inherent and arbitrary, remains, then, an essential problem

faced by designers of software systems, and particularly by

designers of distributed, real-time systems.

The present paper investigates the nature of complexity as

pertaining to design of distributed, real-time systems.  Three

main questions are considered.  First, what problems face

designers of distributed, real-time systems?  Answering this

question reveals the essential complexity inherent in the

software for such systems.  Second, what methods can designers

use to address the problems they face?  Some of the methods

discussed are currently used routinely by designers, while
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others remain the subject of research.  The present paper

evaluates design methods against the needs of distributed,

real-time system designers.  Finally, the paper considers how

software design environments might improve a designer’s ability

to manage the complexities of designing distributed, real-time

systems.  To address these questions, seven sections follow this

introduction.

Section II, The Design Problem, begins by examining the

general nature of design: its definition, its purpose, and

associated activities.  The concept of design methods is

introduced as an essential tool to assist designers.  The

section then delves into specific goals that must be achieved by

designers of distributed, real-time systems.  The section closes

with a discussion of the special considerations faced when a

real-time system is also distributed.

Section III, Some Design Approaches, provides a

designer’s-eye view of the current practice of real-time system

design.  The section begins with a discussion of the question of

schedulability.  The major approach to designing hard-real-time

systems (HRTs) over the past three decades revolves around a

fixed schedule of module executions, computed off-line, coupled

with a cyclic executive that enforces the schedule.  In general,

this approach results in deterministic software that meets all

real-time requirements, but also in a software system that is

difficult to understand and maintain.  More recent approaches

treat real-time software as software systems first and real-time

systems second.  This means that these  approaches are used to

design software that, while understandable and maintainable, is

concurrent, and thus operates non-deterministically.  Such

non-determinism traditionally calls into question the

schedulability of concurrent designs; however, concurrent design

approaches are growing in popularity due to a new scheduling

theory called rate monotonic analysis (RMA).  
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Depending on which view a designer takes on the question of

schedulability, different design approaches might prove

necessary.  This paper examines two general design approaches,

deterministic and concurrent, and considers some examples of

each approach.

Having considered the problems faced by designers and then

having examined some design approaches, the paper recapitulates,

in section IV, a set of open issues in the design of

distributed, real-time systems.  The issues identified represent

the hard problems that designers must solve, but for which no

routine solution is available.

Section V, Formal Methods for Designers, reviews formal

models and methods that various researchers believe might

address the open issues identified in section IV.  Most of the

formal models and methods discussed are supported by automated

tools.  For each method, the basic notation, model and

properties are described, some specific examples are discussed,

and, where applicable, a few representative automated tools are

identified.  The discussion includes a summary of the strengths

and weaknesses of each method.   

In some cases, the formal models and methods reviewed in

section V comprise a foundation for languages that can be used

to describe designs and then to implement prototypes of those

designs.  Section VI, Languages for Designers, considers several

design languages that embody formal models and methods. Included

in the discussion of each language are: 1) the basic notations,

semantic models and properties, 2) some representative

implementations, and 3) the strengths and weaknesses.

Section VII, Design Environments, synthesizes the concepts

investigated in previous sections of the paper.  Synthesis is

achieved by envisioning a design environment that might enable

the designer of distributed, real-time systems to develop and

describe understandable designs that are functionally correct
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and that meet specified performance requirements.  The desirable

traits of such a design environment are sketched, then a few

example design environments are described and evaluated against

the set of desired traits.

A concluding section (VIII) provides a summary of the ideas

advanced in the paper.  Designers of software systems are

challenged by an inherent complexity; and the most complex

software known today is embedded in real-time systems.  In the

future, as real-time system components become distributed, the

complexity of such software will jump.  While approaches exist

today to deal with the design of real-time systems, some

significant open issues remain.  Additional issues arise when

real-time systems are also distributed systems.  Researchers are

investigating formal methods and models, and related languages,

for addressing many of the problems faced by designers of

real-time and distributed systems.  In some cases, researchers

propose design environments to assist the designer through an

integrated set of tools.  This paper attempts to identify the

desirable traits of an environment for designing distributed,

real-time systems, to show that the current state of research

regarding software design lacks maturity, and to identify some

of the more promising avenues for continued work.

II.  The Design Problem

The design problem is similar in nature to the problem

faced by the author of this paper as he sits at a keyboard and

gazes upon a white sheet of paper. The author knows in the main

what to say but he wonders just how best to say it.  This

problem is fundamentally different from the problem of a natural

scientist.  A scientist examines the world around us in an

effort to discern cause and effect relationships and to describe

those relationships in the form of mathematical equations and
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scientific laws that enable us to predict the outcome of various

physical situations.  In short, a natural scientist is concerned

with what is, and why.  A designer, on the other hand, is

concerned with what ought to be, and how.

This essential difference between natural science and

design led Herbert Simon to include design within the category

of disciplines that he dubbed the sciences of the artificial.

[SIMO81]  According to Simon, "[d]esign...is concerned with how

things ought to be, with devising artifacts to attain goals."

[SIMO81, p. 133]  Four other, similar, views of design were

reported by Peter Freeman [FREE80] in a survey he conducted:  1)

design is an imaginative jump from present facts to future

possibilities, 2) design is finding the right components of a

structure, 3) design is decision-making in the face of

uncertainty with high penalties for error, and 4) design is

simulating, iteratively, a proposed solution until confident

about the outcome.  Freeman goes on to suggest that design has

three purposes.

One purpose of design is to discover the structure of a

problem.  Within the realm of software this purpose might be

fulfilled by reviewing the informal software requirements

specification and then by analyzing the requirements using some

systematic method.   A second purpose of design is to create an

outline, or architecture, of a solution for a problem.  For

software design, this purpose might be met by describing a set

of software components and the relationships between them in

enough detail that further design and then coding can be

performed on each component.  A third purpose of design is to

evaluate the results of proposed architectures against the

stated goals (i.e., the requirements).  For software design,

this purpose is often handled poorly.  Typically, evaluation is

delayed until system testing.  Design flaws discovered during

system tests can be quite costly to repair.  A more modern
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approach employs rapid prototyping to validate the informal

requirements; however, prototypes often encode a de facto

solution to the requirements and thus usurp a designer’s ability

to propose and evaluate various solutions.

To meet his purposes a designer usually engages in a number

of intellectual activities. [FREE80]  One such design activity

might be called operationalization.  Operationalization entails

improving the informal requirements so that ambiguities are

removed, inconsistencies are reconciled, and incompleteness is

removed.  This is a necessary part of the designer’s job because

later design activities depend upon the system requirements.

Another design activity involves abstraction.  Here the designer

generalizes about particular properties of the problem or of a

possible solution;  certain details are set aside at critical

moments so that the designer can concentrate on a specific

issue.  Associated with abstraction is elaboration.  A designer

employs elaboration to move down a hierarchy of levels of

abstraction so that essential details can be provided at an

appropriate time.  Probably the most important intellectual act

during design is verification.  A designer must verify that a

proposed solution meets the requirements, any imposed standards,

and any extant constraints.  A designer must also be able to

verify the performance characteristics of a proposed solution.

The essence of design, as embodied by the four intellectual

activities of operationalization, abstraction, elaboration, and

verification, is decision-making.  Unfortunately, the record

reveals that designers do not always make sound decisions.

Experience with large software systems shows that over
half of the defects found after product release are
traceable to errors in early product design.
Furthermore, more than half the software life-cycle
costs involve detecting and correcting design flaws.
[BERE84, p. 4]
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To ameliorate these problems researchers have focused on the

development of design methods.  Several design methods for

distributed and real-time systems are discussed in section III

of this paper, but for now consider, in general, how a design

method can help.  A design method specifies: 1) what decisions a

designer must make, 2) how those decisions should be made, and

3) in what order they should be made. [FREE80]  A design method,

then, should provide the intellectual roadmap that enables a

designer to refine requirements successfully, to apply

abstraction and elaboration correctly, and to achieve design

verification.  Design methods aim to improve the skills of

software designers so that the designs produced by designers

using a given method achieve a reasonable quality on a

repeatable basis.

To this point in the paper the reader should have gained a

general understanding of design, of the purposes of design, of

the intellectual activities involved in design, and of the way

in which design methods might aid a designer.  From here, the

discussion becomes more specific to software design, and

particularly to design of distributed, real-time software.

A. Design Goals For Distributed, Real-Time Software

The goals for designers of distributed, real-time software

build upon the goals for designers of general software systems.

Before considering specific design goals, a short discussion to

distinguish distributed, real-time software from general

software may prove helpful.  Software, generally, is designed

and implemented to fulfill a set of functional requirements and

non-functional requirements.  Functional requirements express

the necessary logical characteristics of a correct solution.

Non-functional requirements describe other operational

constraints, such as performance, reliability, and specific

target hardware.  For real-time systems, the non-functional
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requirements take on an added importance.  For so-called soft

real-time (SRT) systems (sometimes referred to as interactive

systems) the performance requirements might indicate a

performance target given a specified load on the system;  for

example, "95% of all transactions will be processed in under

five seconds when the system load peaks at 100 transactions per

second."  The understanding of such requirements is that when

system load exceeds the peak, or on five percent of the

occasions that the load is at or below peak, system performance

may degrade without any real harm.  For so-called hard real-time

(HRT) systems (sometimes referred to as reactive systems) the

performance requirements can form a three-level hierarchy:  1)

those that must be met for correct system function, 2) those

that are soft (in the sense formerly discussed for SRT systems),

and 3) those that have more lenient time constraints (usually

called background functions).  An example of a HRT requirement

might be that "a temperature sensor shall be polled every 100

ms."  For such a requirement, a software solution that polled

the sensor twice at 101 ms apart would be inadequate.  For

real-time software, then, the performance requirements take on a

functional flavor in that a system that does not meet the stated

performance constraints is considered functionally degraded for

soft real-time requirements and is considered functionally

incorrect for hard real-time requirements.

While real-time requirements complicate software design by

giving a functional flavor to some otherwise non-functional

requirements, distribution of software functions among several

processors introduces another type of complexity.  Distribution

of software functions ensures that concurrent processing will

occur.  Concurrency leads to a hidden set of correctness

requirements involving inter-process synchronization and

communication.  The requirements arising from concurrency are

seldom mentioned specifically in a software requirements
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document but a system will be unable to meet its stated

functional and non-functional objectives unless concurrency is

properly handled.

 Given the foregoing discussion of real-time requirements,

distribution and concurrency, the reader may be surprised to

learn that designers of distributed, real-time systems aim to

achieve the same three general goals as designers of any

software:  1) understandability, 2) functional correctness, and

3) performance sufficiency.  Surprised or not, the reader should

already suspect that meeting these goals will be more difficult

for designers of distributed, real-time software than for

designers of sequential, non-real-time software.  The following

paragraphs confirm the reader’s suspicions.

To achieve understandability the software designer must

meet four sub-goals.  First, the designer must ensure complete,

consistent, and unambiguous functional requirements.  Software

requirements documents typically consist mostly of natural

language descriptions augmented with some formal specifications

that are generally applied unevenly.  The designer must seek to

improve the rigor of the specification, to fill the gaps, and to

resolve contradictions.  Without such efforts the designer

cannot achieve an understanding of the problem sufficient to

propose and evaluate solutions.  The remaining sub-goals relate

directly to design.

The designer must provide a clear structuring of the system

into processes and information hiding modules.  Then the

designer must specify the behavior of the processes and the

functions of the information hiding modules.  Finally, the

designer must establish traceability between the structure and

specification of the design and the software requirements.  The

result of achieving these sub-goals, is an understandable, but

static, design of a software architecture.
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Next, the designer must work to ensure the functional

correctness of the design at the component level and at the

architectural level.  At the component level, the designer

should specify partial correctness criteria for each

sequentially executing path.  Such paths typically include the

program flow of control (one for each task when the design is

concurrent) and the services provided by each information hiding

module.  In general, the designer should specify preconditions

and post-conditions for each design component such that if the

preconditions of the component are satisfied on entry to the

component, then the post-conditions will hold upon exit from the

component.  These specifications will enable component designers

and coders to understand precisely what their component must

achieve, as well as to understand what should be provided to and

expected from components with which their components interact.

Such specifications can also serve as a foundation for unit and

integration testing as the design is implemented.

At the system level, designers of concurrent systems have

two concerns regarding functional correctness.  One concern

involves ensuring the absence of undesirable properties, such as

deadlock, livelock, unfairness, failure, and unreachable states,

that can occur in concurrent designs. [KARA91, LIU90, LEVI90,

XU93]  Deadlock occurs when two or more tasks cannot proceed

with processing because they are waiting on resources that are

held by each other or they are waiting to synchronize at

mutually conflicting points.  Deadlocks can creep into a design

in a variety of ways and can be difficult to detect, to isolate,

and to eliminate.  Livelock occurs when one or more tasks in a

concurrent system continue to cycle but are unable to make any

progress.  Livelock is a particular problem in distributed

systems where normal behaviors may be repeated indefinitely due

to an aberrant design.  Unfairness occurs when one or more equal

priority tasks, among a competing set, are given preferential

- 10 -



access to a resource, or when one or more higher priority tasks

consume so much of a resource that an inadequate amount is left

for lower priority tasks.  Unfairness comes in two forms: hunger

and starvation.  A task suffers hunger when an insufficient

amount of a needed resource is available.  A task suffers

starvation when none of a needed resource is available.  Failure

occurs when tasks attempt to interact but find that conditions

prevent such interaction or when an unhandled exception occurs

within a task.  Unreachable states result when a design includes

logic for handling conditions or events that cannot occur.  Such

unreachable states may result from an inadequate design or from

poorly understood system requirements.

A second concern of the designer, regarding functional

correctness at the system level, is to establish that a

concurrent design exhibits certain desirable properties, such as

proper synchronization among communicating tasks, mutually

exclusive access to shared resources, bounded behavior, and

conservation of system resources. [DILL90, MURA84, MURA89,

WILL90, ZAVE86]  Proper synchronization ensures that tasks

obtain the necessary input before executing and that external

events are properly ordered by the software.  Controlling shared

access to system resources prevents corruption of system data.

Ensuring bounded behavior prevents queue overflow and the

subsequent loss of external or internal events.  Verifying

conservation of resources ensures that the software does not

consume resources that are intended to persist for the duration

of the execution.

The final concern of the designer is to meet the

performance constraints for the system. [LIEN92, LIU90, NATA92,

LEVI90, XU93] An initial complication arises when the timing

constraints in the requirements specification are not complete

or consistent.  So the first concern of the designer is to

properly specify the system performance constraints.  After a
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system’s timing requirements are properly understood, the

designer’s major performance concern, for hard real-time

systems, becomes ensuring schedulability of the software design

under worst-case assumptions.  This involves estimating or

prescribing the worst-case execution time of each design

component and then establishing that the software will meet all

deadlines for periodic processes, will achieve the required

response time for aperiodic events, and will maintain stability

under transient, peak loads.  A "...perplexing aspect of this

[time] problem is that most system design and verification

techniques are based on abstraction, which ignores

implementation details...[but]... timing constraints are derived

from the environment and the implementation." [STAN88, p. 14]  A

subsidiary concern of the designer is to maximize the software

performance under typical, sustained loads.

In summary, designers of software are concerned with

creating understandable designs that can guide implementation

and provide traceability to the requirements specification;

however, when the designs include concurrency a number of

implicit functional requirements must be addressed.  Concurrent

designs must be free from deadlock, livelock, failures,

unfairness, and unreachable states; at the same time concurrent

designs must exhibit proper synchronization and resource sharing

among tasks, must exhibit boundedness, and must conserve system

resources.  Designers of real-time systems must also be

concerned about specific performance characteristics:  1)

maximal performance under a sustained load for interactive

systems and 2) worst-case performance under transient loads for

reactive systems.  Many of the issues faced by designers of

concurrent, real-time systems can only be addressed through a

dynamic evaluation of the software design.  Unfortunately, such

dynamic evaluations often occur only after the system is

implemented.
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As complicated as concurrent designs can be, concurrent

systems are actually a subset of distributed systems.  That is,

distributed systems are naturally concurrent, but concurrent

systems need not be distributed.  When a concurrent system is

also a distributed system, the software designer must address a

special set of issues that can further complicate the design.

These special considerations for distributed systems are

discussed next.

B. Special Considerations For Distributed Systems

Designers of distributed systems face an extra decision

during system structuring -- the allocation of processes and

data to nodes. [ROFR92, SUMM89]  Distributed system design

methods generally provide guidelines to help a designer with

these decisions; however, the effect of such decisions on system

performance and on implicit functional correctness remain no

better addressed than is the case for concurrent designs.

When processes and data are distributed among nodes,

further complications arise due to uncertainties regarding

inter-node communication. [KLEI85, SHAT84, STAN82, STAN88]  An

initial complication is selecting a suitable inter-node

message-passing paradigm to use.  Within concurrent software,

asynchronous message-sending (sometimes called loosely-coupled

communication) provides a natural model for producer-consumer

relationships.  Of course, in centralized, concurrent designs

the loss of a message is seldom of concern.  Should tasks in

separate nodes need to communicate, yet remain decoupled, some

sort of asynchronous message-passing must be provided between

nodes.  In such cases, the error properties (discussed below) of

the communications path become a grave concern.

When synchronous message-passing between tasks on separate

nodes is needed, a decision must be made whether to support

synchronization with or without reply, or both.  Decisions taken

here will dictate the requirements that must be met by the
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inter-node communication protocols.  Should inter-task

rendezvous be needed across nodes, then synchronous message

sending with reply will likely be required.

In the event that a client-server relationship exists

between tasks on separate nodes, synchronous message-passing

with reply might provide a natural means to implement a remote

procedure call (RPC) mechanism.  Even in this case, the designer

must know what semantics the underlying RPC protocol will

provide.  Some RPC protocols can guarantee "at-least-once"

semantics, i.e., a remote call will be executed at least once,

but maybe more than once.  Other RPC protocols provide

"exactly-once" semantics, i.e., a remote call will be executed

exactly once.  Even with these issues settled, a semantic is

needed to interpret exceptions returned from RPCs.

Aside from the many possible paradigms for sending messages

via network, the designer of distributed systems must also be

concerned with paradigms for receiving messages from a network.

When a central system is used to pass messages between tasks,

the semantics are provided by the operating system or real-time

executive.  When a system is distributed around a network, the

designer must become involved in the message reception semantics

that are needed for a particular design.  A receiver might wish

to wait for any message arriving at a queue.  A receiver might

also wish to wait only for some specific message or on a

selected set of messages.  Perhaps a receiver needs to wait on a

set of message queues based on priority.  Whatever decisions are

made regarding message reception paradigms, a suitable set of

protocols must be designed and implemented.  The reader should

bear in mind that the protocol processing itself constitutes a

distributed, concurrent system that may also face hard,

real-time requirements.

In addtion to selecting paradigms for sending and receiving

messages, the designer must determine the level of integration
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needed between the mechanisms for external communications,

internal events, and external interrupts.  When these paradigms

are integrated (as they are for example in the Ada language),

the designer’s task may be significantly eased.  On the other

hand, achieving the required level of integration may prove

impractical, especially when the nodes execute under different

operating systems.

Another consideration for the distributed system designer

is the need for multi-addressee message passing.  Do the

applications require multi-casting or broadcasting? If so, can

the communications network support these features?  What effects

will these features have on system performance?

Beyond message passing paradigms, the designer must also

consider the physical properties of the communications path and

the residual error properties of communications protocols.

Sending messages between nodes will incur a delay for access to

the network, for transmission of the message, and for

propagation.  In addition, the protocol processing software

itself will add to the message delay.  And these delays are

generally stochastic.  How can worst-case delay be computed for

messages that pass between nodes?  Many times messages are

garbled, misordered, or lost during transit between nodes.

These errors can introduce random delays when the communications

protocols attempt to recover from them.  What happens if the

communications protocols cannot recover?  Are some forms of

errors acceptable in order to better bound the delay?  What

happens if one of the nodes fails?  Can pending transactions be

recovered or must they be restarted?  

Another issue that sometimes occurs in a distributed system

is incompatibility among data representations.  To address such

incompatibilities, methods exist for encoding data in a standard

transfer syntax that can be recognized and decoded by all

systems in the network.  Of course, the processing time for
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encoding and decoding the data adds to the communications delay

and, thus, must be taken into account by the designer.

Another issue that appears whenever systems are distributed

and accessible by a network is that of security.  For a

real-time system, particularly a reactive control system or an

interactive system with access to confidential information, five

security issues must be considered.  First, a means must exist

to authenticate that a message arriving from an external process

does indeed originate with that external process.  Second,

having established the identity of an external process, a means

must exist to control the access of the external process to only

those resources to which that process is entitled.  Third,

messages exchanged between nodes on a network must be protected

so that the message sent is exactly the message received, or

else the receiver should be able to detect that the message has

been changed.  In some situations, messages exchanged between

nodes might require confidentiality so that observers outside of

the communicating nodes cannot eavesdrop on the conversation.

Finally, in a selected set of applications, requirements might

exist to prevent the sender of a message from later claiming

that the message was never sent.

As the reader can readily see, when components of a design

are distributed a bewildering array of issues faces the software

designer.  In truth, the present state of design practice is

unable to cope in any general sense with distributed, real-time

systems.  The best that is achieved in practice today is to

build a distributed, real-time system from homogeneous

components, to provide dedicated communications resources

between nodes, to isolate the network physically to obviate

security concerns, to employ forward error correction techniques

to keep communication errors within known bounds, to arrange hot

standby nodes to take over when critical nodes fail, and to use

simple asynchronous or RPC mechanisms to communicate between
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processes on distinct nodes.  Even given these restrictions,

design of distributed, real-time systems remains a difficult way

to make a living.  This should be apparent to the reader who

recalls the difficulties attendant to designing concurrent,

real-time systems.  Distribution, even when severely curtailed,

adds to the designer’s challenge.

To close this section on the design problem, the following

extended quote from W. Beregi of IBM describes the state of  

software design practice.  

We have commonly defined architecture using ambiguous
natural language, diagrams, and other freeform
notations.  Such expression hinders our ability to
communicate accurately the system’s structure and
prevents us from formally analyzing the structure and
dynamic behavior of the system.  Thus we design and
implement functions based on structures and protocols
that are weakly specified, poorly communicated, and
not formally validated during design.  We are unable
to test the feasibility of our initial architecture
ideas or compare alternative proposals.  We are unable
to examine the architecture specification and
determine the effect that architecture tradeoffs and
function placement decisions have on system
performance, usability, and reliability.  To explore
these aspects, we must either create expensive,
throwaway models of the system or wait until we
integrate the implemented functions late in the test
cycle.  Costs usually dictate that few, if any,
alternative designs are considered.  Poor architecture
decisions can propagate through all stages of a
project and cause costly rework to undo design and
implementation based on those decisions.  [BERE84, p.
4]

Beregi goes on to observe that each new system is usually custom

designed -- existing, successful designs are not reused because

no ready made substructures or subassemblies exist into which

new components can be fitted.

The next section examines how real-time systems are

designed today.  First, the question of schedulability in hard

real-time systems is considered.  Then two different types of

- 17 -



approaches to designing real-time systems are described.  Within

each approach, some specific design methods are surveyed.

  

III.  Some Design Approaches

Approaches to designing real-time systems can be classified

into two general categories.  One category, deterministic

approaches, encompasses real-time design methods that are most

often used in practice and that have at least a thirty-year

history.  The second category, concurrent approaches, are

gaining in popularity, but have only about a ten-year history of

use in real-time applications.  The community of researchers and

practitioners of real-time design methods remains divided on

which class of methods achieves the best results.  Supporters of

deterministic approaches argue that concurrent designs cannot

ensure that application timing constraints will be met.

Supporters of concurrent designs argue that deterministic

approaches result in designs that are difficult to understand

and maintain.  Further, advocates of concurrent approaches

believe that recent results in the area of rate monotonic

scheduling theory can be used to ensure that concurrent designs

will meet application timing constraints.  These arguments are

considered in more detail below.

A. The Question Of Schedulability

Most hard real-time (HRT) applications consist of periodic

tasks with hard deadlines and a small number of aperiodic tasks
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which require short response times.  To ensure that a HRT system

meets required deadlines and response times a feasible schedule

must exist for the software tasks comprising the system.  A

feasible schedule exists if every task begins execution when

enabled to run, or later, and every task still meets its

established deadlines.  Scheduling is complicated by the fact

that certain relationships must be observed between the tasks.

For example, some tasks may produce results that are needed by

other tasks, thus implicitly forcing an ordering requirement

among task executions.  As another example, tasks that share

access to resources must be kept from simultaneous access to

those resources.  Another consideration is that switching

between tasks introduces overhead; thus, tasks should be

scheduled so as to reduce preemptions.  Of course, preemptive

scheduling is possible only when tasks do not require mutually

exclusive access to shared resources.

These HRT scheduling constraints are difficult to meet,

especially in complicated systems.  One approach to meeting such

constraints advocates using a pre-run-time scheduling algorithm

to account for all inter-task relationships and to then search

for a feasible schedule that will satisfy the timing constraints

of the application. [PENG93, SHEP91, XU93]  First, the tasks in

the system are identified and classified as periodic or

asynchronous.  Each periodic task is characterized with a set of

parameters: period, worst-case execution time, deadline, and
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release time (i.e., the delay between the beginning of a task’s

period and the earliest time the task can run).  Each

asynchronous task is characterized by a similar set of

parameters:  minimum time between two consecutive invocations of

the task, worst-case execution time, and response time.  Second,

any relationships between the tasks are identified and

described.  These relationships typically include precedence

ordering (e.g., task A must execute before task B), exclusion

(e.g., execution of task C be interleaved with execution of task

D), and resource constraints (e.g., task E must run on processor

Y).  Such inter-task relationships can become quite complex,

especially in a large system of tasks running on multiple

processors.

"For satisfying timing constraints in hard real-time

systems, predictability of the system’s behavior is the most

important concern;  pre-run-time scheduling is often the only

practical means of providing predictability in a complex

system." [XU93, p. 73]  To enable pre-run-time scheduling of

complex real-time systems, the task descriptions and

relationships must be encoded for use by an automated search

algorithm.  In general, such algorithms use heuristic, branch

and bound searches to seek a feasible schedule. [PENG93, SHEP91,

XU93]  Xu and Parnas identify and evaluate over twenty

pre-run-time scheduling approaches for real-time systems. [XU93]
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Advocates of pre-run-time scheduling can point to specific

 practices, used in concurrent designs, that reduce the

predictability of a system. [XU93]  One such practice is

assigning static priorities to tasks (this is the only approach

supported, for example, by the Ada language) and then to

allocate resources in a strict priority order.  Such practices

can result in missed deadlines, because in certain situations a

processor must be left idle, so that deadlines can be achieved,

even though some task may be ready to execute.  In essence, Xu

and Parnas argue that pre-run-time scheduling can use global

knowledge to determine a fixed schedule that will meet

deadlines, while the local knowledge encoded as task priorities

results in non-deterministic, run-time behavior that can cause

missed deadlines.

A second practice, standard in concurrent designs, that can

lead to timing problems is the use of complex run-time

mechanisms for task synchronization and mutual exclusion (e.g.,

semaphores, locks, and monitors).  Use of such mechanisms makes

timing difficult to predict, incurs overhead in context

switching, and can lead to deadlock and starvation.  Of course,

properly used in careful designs, run-time synchronization

mechanisms should not cause deadlock and starvation; however,

using such mechanisms can result in unpredictable waiting times.

Another bad practice that Xu and Parnas find to be common

in concurrent designs is that of allowing external events to
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interrupt processes and occupy system resources at random times.

Such interrupts make task timing difficult to predict and incur

unnecessary context switching time.  Xu and Parnas argue that

most internal or external events can be buffered until some

periodic task can process them; thus, that a deterministic

schedule can be maintained even in the face of asynchronous

events.

As a final caution, Xu and Parnas assert that using

stochastic simulations, as system designers often do, to verify

the performance of a design is unsatisfactory.  Such simulations

can indicate the presence of flaws, but not their absence.

Also, stochastic simulations show only average timing behavior,

not the worst-case performance of the system.  This view is

shared by other researchers. [MAHJ84]

Advocates of concurrent designs have long held that cyclic

executive approaches require application software to be divided

into execution units as dictated by timing and synchronization

requirements rather than by the logic of an application.  As a

result, advocates of concurrent designs argue that cyclic

designs reduce the understandability, maintainability, and

extendibility of the software.  Concurrent designs, on the other

hand, enable designers to manage tasking at an abstract level,

divorced from the details of task execution.  But, because in

HRT systems these concerns are secondary, advocates of

concurrent designs have been unable to convince most
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practitioners that concurrent approaches to HRT systems are

feasible.  The recent emergence of rate monotonic scheduling

theory might change this situation.

Rate monotonic theory assures

that as long as CPU utilization of all tasks lies
below a certain bound and appropriate scheduling
algorithms are used, all tasks will meet their
deadlines without the programmer knowing exactly when
any given task will be running.  Even if a transient
overload occurs, a fixed subset of critical tasks will
still meet their deadlines as long as their CPU
utilizations lied within the appropriate bounds.
[SHA90, p. 53]

Rate monotonic theory consists of four theorems that specify how

a concurrent system of tasks will behave. [OBEN93, SEI92, SHA90]

Each theorem is considered below.

The first two theorems address scheduling for n

independent, periodic tasks, each assigned a fixed priority with

higher priorities going to tasks with shorter periods.

Theorem 1. n independent periodic tasks scheduled
using rate monotonic analysis will always meet
deadlines if:

 whereΣ
i=1

n

Ci Ti ≤ n(21 n − 1) = U(n)

Ci is the execution time of task i,
Ti is the period of task i, and
U(n) is the CPU utilization of n tasks. [SHA90, p. 54]

      

Theorem 2. For a set of independent periodic tasks, if
each task meets its first deadline when all tasks are
started at once, then the deadlines will always be met
for any combination of start times. [SHA90, p. 54]
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Given a value for n, the bound U(n) can be computed.  As n ,→∞
U(n) approaches 69%.  So, for a large system the worst-case CPU

utilization for rate monotonic scheduling (RMS) to hold will

leave 31% of the CPU capacity unused.  Deterministic scheduling

with cyclic executives can achieve much higher CPU utilization

and still ensure that deadlines are met.  Proponents of RMS

point out that 31% CPU idle time is the worst-case and that a

more likely figure for a randomly chosen set of tasks is 12% CPU

idle time.  Further, RMS advocates argue that if U(n) is

exceeded, the critical time zone theorem (Theorem 2) of RMS can

be used to determine if deadlines can still be met.  In other

words, Theorem 2 states that if any schedule can be found such

that when all tasks are started together the deadlines are met,

then the task set is schedulable, regardless of execution order.

Rate monotonic theory expresses this as a mathematical test that

is captured in a third theorem.

Theorem 3. A set of n independent periodic tasks scheduled 
by rate monotonic analysis (RMA) will always meet its 
deadlines, for all task phasings, if and only if,

∀i, 1 ≤ i ≤ n,

 wheremin(k, l) ∈ Ri Σ j=1
i Cj

1
lTk

 lTk

Tj
 ≤ 1

Cj is the execution time of task j,
Tj is the period of task j, and

   [SHA90, p.55]Ri ={(k, l) 1≤ k ≤ i, l = 1, ...Ti/Tk}

This theorem expresses formally the checking required by Theorem

2.
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Rate monotonic theory guarantees that the n periodic tasks

within the schedulable set will meet their deadlines even if the

CPU is overloaded.  The price of this guarantee is that some

computationally expensive tasks may not fit within the

schedulable set.  Should a critical task not fit within the

schedulable set, RMS allows such a task to be divided into a

number of tasks with lower computation times and shorter

periods.  In this way, a critical task can be inserted into the

schedulable set as a group of tasks.  (Of course, artificially

dividing a task into sub-units to achieve schedulability incurs

the penalties of reduced understandability, maintainability, and

extendibility.)

As presented so far, RMS addresses only periodic tasks;

however, aperiodic tasks within a real-time system must also be

scheduled to meet response time goals.  Rate monotonic theory

allows aperiodic tasks to be treated as periodic tasks with a

period equivalent to the maximum rate at which its associated

events enter the system.  By modeling aperiodic tasks as

periodic tasks, the rate monotonic analysis theorems can be used

to schedule them.

A more difficult problem for RMS deals with task

synchronization.  As pointed out by advocates of deterministic

scheduling, semaphores, locks, monitors, rendezvouses, and

similar synchronization mechanisms can prevent a system from

meeting deadlines by introducing non-deterministic delays as
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tasks wait for access to resources or for a rendezvous.  One way

to avoid these problems is to ban preemption during critical

sections.  Another method, advocated by some proponents of RMS,

is to implement a priority ceiling protocol. [SHA90]  A priority

ceiling protocol would require two conventions: 1) when a task

begins to block the execution of a higher priority task, then

the priority of the blocking task will be raised to that of the

highest priority task that is being blocked and 2) a new

critical section can start execution only if the section

executes at a priority higher than the one it preempts.

If a ceiling priority protocol is implemented, then a

concurrent design’s schedulability can be assessed using the

fourth theorem of RMS.

Theorem 4.  A set of n periodic tasks using the priority
ceiling protocol can be scheduled using RMA for all task
phasings, if

(Σ i=1
n Ci/Ti ) + max(B1/T1, ..., Bn−1/Tn−1) ≤ n(21/n − 1) where

Bi is the longest duration of blocking that can be
experienced by task i.

Unfortunately, most run-time systems and real-time executives do

not yet support a priority ceiling protocol, although some do

support an less capable priority inheritance protocol that

allows a blocking task to increase its priority to the level of

the highest task it is blocking.  Another unfortunate fact is

that many concurrent designs are targeted for implementation in

Ada, yet the Ada language does not provide the support necessary
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to use RMS effectively.  Still, RMA can be used with Ada

provided certain coding guidelines are followed and provided

that a special-purpose run-time system is available that

implements a priority ceiling protocol. [SHA90]  

Rate monotonic analysis can be expected to have a larger

role in the future because its principles have been adopted in

emerging standards for FUTUREBUS+ (a hardware bus intended for

distributed, real-time systems), for Posix (a standard operating

system interface), and for Ada 9X (the next generation Ada

language and run-time system). [OBEN93]  A few vendors of Ada

run-time systems and real-time executives are already offering

implementations of the priority inheritance protocol. [OBEN93]  

In addition, work is underway to extend rate monotonic analysis

to multiprocessor configurations. [JOSE86]

The reader should bear in mind the issue of schedulability

as the discussion turns now to design approaches.  The prime

objectives for hard real-time software are: 1) a fast response

to critical events, 2) a maximum number of timely transactions

per second, and 3) stability under transient loads.  The

secondary objectives of such software include: 1)

understandability, 2) maintainability, and 3) extendibility.

Deterministic design approaches aim to ensure the primary

objectives at the cost of the secondary objectives.  Concurrent

design approaches aim to maximize the secondary objectives,

while still enabling the primary objectives to be satisfied.
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B. Deterministic Design Approaches

In general, deterministic design approaches require that

processing logic be divided into scheduling blocks that run to

completion every time they are called. [FAUL88]  Precedence

relationships and periodicity are then defined for the

scheduling blocks and a pre-run-time scheduler produces a

schedule that satisfies precedence and timing constraints.  The

scheduling blocks are then distributed to programmers along with

a maximum processing time.  Each programmer must ensure that his

module performs correctly and executes within the maximum time

allotted.  At run-time, a cyclic executive manages execution of

each scheduling block in accordance with the predetermined

schedule.  As long as each module does not exceed its processing

budget, all deadlines will be satisfied.  Deadlock, starvation,

and livelock cannot occur.  Mutually exclusive access to shared

resources is guaranteed.  Of course, the software will not be

very adaptable to change.  As functional requirements are added,

the design cycle must begin again because all of the modules in

the design are tightly inter-related.

While deterministic design approaches have been used to

develop real-time systems over the past three decades, no

rigorous, repeatable methods have been documented.  Some

practicing designers employ published techniques for structured

analysis and design, adapting them as necessary to meet the

unique need of cyclic designs.  The author can draw on his own

- 28 -



experiences designing air traffic control systems to illustrate

deterministic design.

Design generally begins by examining periodic external

stimuli to determine what information arrives at the system and

how often.  Then the required periodic outputs are studied to

detail the content and rate of output generation.  Once the

periodic nature of the system is understood, asynchronous inputs

are analyzed to determine how often they arrive and what

processing they require.  Designers who use structured analysis

produce a system context diagram and a set of hierarchical data

flow diagrams to document the results of the analysis.

Design continues with the layout of a common data

repository that all modules can access (mutual exclusion will be

guaranteed by the cyclic executive).  In general, the common

data repository accumulates information received from external

events and includes system configuration data needed to generate

output information.  The general outline of the system will be:

1) process periodic external inputs and update common data, 2)

generate periodic outputs, and 3) process asynchronous inputs.

The system is structured logically into the modules needed for

the particular application; a module ordering is established and

a schedule is produced to meet the timing constraints.  Finally,

each module is allocated a piece of the available time.

Designers who use structured design produce a data dictionary

and a module hierarchy chart.
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In summary, deterministic design approaches treat system

design as a process of allocating available CPU time among the

system modules based on the synchronicity of the input events

and the update rate of the output events.  Asynchronous events

are budgeted to have some amount of time within the system

cycle, and therefore, the system’s ability to handle

asynchronous events is bounded.  Modules operate on common data

and must live within a strict time budget.

Deterministic approaches to designing real-time systems,

although practiced widely, make little use of modern software

engineering techniques.  Concurrent design approaches attempt to

introduce modern software engineering methods into the design of

real-time systems.

C. Concurrent Design Approaches

In general, concurrent design approaches involve two

phases: 1) problem analysis and 2) architectural design.  The

objective of the problem analysis phase is to understand the

structure, data, and behavior associated with an application.

In general, the results of problem analysis include: 1) data and

control flow diagrams, 2) state transition diagrams or tables,

3) data dictionaries, and 4) data transform logic

specifications.  The second phase, architectural design, uses

the products of the problem analysis to create a concurrent

design structured as a set of tasks and information hiding

modules.  In some cases, a concurrent design method also
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includes procedures to estimate a system’s worst-case response

time to external events.  In general, the results of concurrent

design approaches are static structures, supported by task and

module specifications, that become dynamic only after the

implementation is coded.

A number of approaches to develop concurrent designs can be

found in the literature. [GOMA84, HULL91, KURK93, NIEL87,

NIEL90, RIDD80, SAND89a, SAND89b, SAND93, WITT85, YAMA93]  The

present paper discusses only a few of these.

Entity-Life Modeling (ELM) as proposed by Sanden first

seeks to identify threads of events (called subjects) in the

problem domain and then passive objects.  The subjects are used

to model resource users and the objects are used to model

resources.  The threads of events will become tasks in the

design, while the passive objects will become information hiding

modules.  A major concern of ELM is ensuring mutual exclusion

when tasks access resources, while also preventing deadlock when

multiple tasks are competing for access to the same set of

resources.  In general, ELM objects are required to implement

their own mutual exclusion.  When a subject needs simultaneous

access to a set of resources, the designer must define and

enforce resource acquisition rules so that tasks do not deadlock

while acquiring resources.  This approach in practice means that

the designer must "[e]stablish a transitive, irreflexive

ordering of resources and permit the cumulative allocation of
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resources only if the allocation conforms to the ordering."

[WITT85, p. 68]

ELM provides a useful model for thinking about concurrent

design problems when a single processor is involved.  ELM does

not, however, apply when a system is distributed.  This

restriction arises because ELM requires an execution environment

where threads of control share an address space. [SAND93]

Gomaa has proposed a family of methods for designing

concurrent and distributed systems. [GOMA84, GOMA89]  These

methods start with a problem analysis based either on real-time

structure analysis (RTSA) or concurrent, object-based

requirements analysis (COBRA).  When a distributed system is

under consideration, Gomaa provides guidelines for logically

structuring a system into subsystems that can execute on

separate processors.  After a subsystem is allocated to a

processor, design proceeds with a problem analysis, using RTSA

or COBRA, for each subsystem.

Upon completion of the problem analysis, a designer will

have produced a set of data/control flow diagrams (with a state

transition diagram for each control transform and a process

specification for each data transform) and a data dictionary.

Design continues by applying task structuring and cohesion

criteria to the data/control flow diagrams to produce a task

architecture diagram (TAD).  Each task is also described through

a task behavior specification (TBS) that records that inputs and
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outputs of the task, the priority of the task, the reason that

the task exists, a link to the control and data flow diagrams,

and a specification of the task’s control logic.  Next, module

structuring criteria are applied to the data/control flow

diagrams to identify the information hiding modules in the

design.  For each module, a specification is written describing

the type of module, the module operations, and the

synchronization requirements for the module.  The information

hiding modules are then allocated to tasks and a system

architecture diagram is produced.  Gomaa also provides some

optional steps for mapping the resulting design to the Ada

language.

Nielsen and Shumate describe a concurrent design approach

that aims at an Ada implementation from the beginning. [NIEL87]

 Beginning with the same context diagram that usually precedes

any software analysis, Nielsen and Shumate immediately assign

tasks to control the devices identified on the context diagram.

Next, Nielsen and Shumate decompose the middle part of the

system using standard data flow diagrams.  From the data flow

diagrams, concurrent processes are identified using a set of

heuristics.  Then interprocess communications mechanisms are

defined, followed by any intermediary Ada tasks needed to

implement decoupled inter-process messages. (Ada tasks can

communicate only via rendezvous and thus intermediary tasks are
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needed when two applications task must communicate via

loosely-coupled messages.)

Once tasks have been identified, Nielsen and Shumate move

immediately to package the tasks in Ada and then to specify

those packages using Ada as a program design language.  After

the Ada package specifications are written, the Nielsen and

Shumate design methods requires two design reviews, followed by

an update to the design documents.  Although the Nielsen and

Shumate method is not intended for distributed system design,

Nielsen later explored some of the issues involved in designing

distributed systems. [NIEL90]

While concurrent design approaches generally lead to

designs that are easy to understand, maintain, and extend, some

shortcomings can be identified.  For one, typical design

approaches lack semantic meaning prior to reaching the code

level. [KURK93]  Also, most concurrent design approaches lack

support for timing analysis, particularly where task

synchronization is involved.  These deficiencies leave a

designer unable to assess the dynamic behavior of proposed

designs.

IV.  Open Issues In Designing Distributed, Real-Time Systems

The preceding sections of this paper considered the

challenges facing designers of distributed, real-time systems

and surveyed some available approaches for designing such
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systems.  Comparing the challenges with the available approaches

reveals that some issues remain unresolved.  In this section,

the most critical open issues are identified and briefly

explained.

One category of open issues results from the nature of

software requirements documents.  The requirements for most

software systems, including real-time systems, are expressed in

natural language.  Indeed, for large systems, requirements

specifications are usually written by a group of individuals,

each writing in their own style about a particular aspect of the

software requirements.  The use of natural language by multiple

authors results typically in a requirements specification that

contains inconsistencies, ambiguities, and omissions.  For those

researchers addressing requirements engineering topics, the open

challenge is to find effective methods to reduce, and eliminate

if possible, these defects from the software requirements

specification.  For researchers addressing software design,

however, the open challenge is to find methods to detect and

resolve flaws contained in software requirements specifications.

Software designed to meet flawed requirements will not satisfy

the customer, and the designer will be held responsible for

these failings.

A second open issue involving requirements is particularly

germane to real-time systems.  Available methods for specifying

software system timing requirements are inadequate.  In general,

system timing objectives are treated as nonfunctional

requirements, expressed in a probabilistic fashion using natural

language.  Such treatment appears inappropriate for hard

real-time systems because certain timing objectives represent

deadlines that bound functionally correct behavior.  A hard

real-time system that performs all functions correctly can still

fail if a single deadline is missed.  Improved methods must be

found for describing deadlines and response time requirements
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for hard real-time systems.  Should deadlines and response times

be related to devices?  Should response times be related to

scenarios of events that map an external input to an external

output?  How should the system load be characterized?  Should

the system load be expressed as the set of individual loads

generated by external inputs?  Should timing requirements be

expressed as maximum response times given a worst-case system

load?  These are only some of the issues on which no agreement

exists.

A second category of open issues for designers of real-time

systems arises when the software is distributed throughout a

network of nodes. From among all of the special considerations

for distributed systems, as discussed in section II of this

paper, two appear unavoidable, yet difficult to resolve.  First,

the properties of the communication paths and protocols in a

distributed system introduce stochastic delays and residual

error probabilities into inter-task communications.  Methods

must be found to bound the maximum communications delay and

residual error rate between nodes in a distributed, real-time

system.  Without such methods, a designer cannot possibly ensure

that task deadlines and response times will be satisfied.  The

best that can be achieved with current methods is some assurance

that, within the bounds of a known load, communication delays

and residual errors will not exceed a specified value with some

probability.  Perhaps the only realistic means to address this

challenge will involve raising an exception when a required

delay or error rate is exceeded.  This introduces the second

unavoidable challenge faced be designers of distributed systems:

choice of inter-task communication paradigm.

Designers of real-time systems are usually forced to adopt

the inter-task communications conventions available with the

real-time executive or the language run-time system used for the

implementation.  In general, the available primitives will also
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integrate external device interrupts into the conventions for

inter-task message exchange.  When a system must, however, be

distributed among multiple nodes, few, if any, real-time

executives or language run-time systems provide native

mechanisms to handle inter-node message exchange.  The designer

then must define mechanisms for inter-node message exchange and

must establish the relationships between these mechanisms and

the mechanisms for local message exchange.  Further, the

designer must include these non-application functions within the

system design and then ensure that they are properly implemented

for each type of node in the distributed system.  The open

challenge for researchers is to remove this burden from

designers by developing an effective paradigm for distributed,

real-time, inter-task communications.

The third category of open issues for designers of

real-time systems stems from the static nature of design

documents.  Most design methods result in diagrams and

supporting paper specifications that clearly express the

structure of a design.  Some automated tools even allow

consistency checking among the various interrelated pieces of a

design.  Unfortunately, because most design methods lack a

formal semantics, dynamic evaluation of designs is usually

postponed until system testing.  Redesigning after flaws are

found during system tests usually comes with a high price tag.

The challenge, then, for researchers is to devise methods

to enable designs to be verified dynamically before a system is

implemented.  Such methods should enable designs to be checked

for safety properties -- absence of deadlock, livelock,

unfairness, and failure, as well as presence of mutual

exclusion, proper synchronization, boundedness, and resource

conservation.  In addition, verification methods should enable

designers to assess resource utilization and to predict the

performance properties of the design.  A means should be
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included to map the design onto various hardware and network

configurations and to assess the effects of these mappings on

system performance and correctness.  To be most effective,

dynamic verification of designs should proceed directly from the

design documentation associated with a design method.

The reader can probably identify other open issues arising

from the material presented in sections II and III, but the

author believes that the most critical challenges are those

outlined above:  improving the designer’s ability to specify and

analyze requirements, devising a method to bound the

uncertainties and to mask the complexities associated with

inter-node communications, and enabling designs to be verified

dynamically before they are implemented.  To address these

challenges, researchers are investigating a number of formal

methods and models, as well as related languages.  Some of the

more prominent formal methods are considered in section V.

Section VI surveys a number of design languages based on formal

models.  Section VII examines several attempts at constructing

design environments that integrate complementary tools in an

effort to meet the challenges facing software designers.

V.  Formal Methods For Designers

Formal methods appear to promise effective solutions to the

open issues that challenge designers of distributed, real-time

systems.  Formal methods encompass models, typically supported

by a notation, that rest on a sound mathematical basis. [WING90]

 By encoding critical aspects of a system into a formal model or

description, designers can uncover ambiguity, incompleteness,

and inconsistency in requirements.  Formal methods, when

supported by appropriate tools, can also be used to verify

system designs.
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Two general categories of formal methods can be defined: 1)

behavioral methods and 2) structural methods. [WING90]  

Behavioral methods allow a designer to describe formally the

intended behavior of a system and then to investigate various

properties that the system will exhibit during operation.  For

designers of concurrent systems, behavioral methods address

issues of task sequencing, synchronization, mutual exclusion,

and, with some methods, task timing and performance.  Some

examples of behavioral methods (covered below) include finite

state automata, Petri nets, temporal ordering, and modeling and

simulation.  

Structural methods enable designers to express formally the

properties that a correctly behaving system will exhibit and, in

some cases, to provide proofs that an underlying implementation

will exhibit the expressed properties.  Structural methods allow

designers to specify invariants for information hiding modules,

as well as preconditions and post-conditions for each module

operation.  With some methods, a designer can even specify the

invariants and pre and post-conditions for procedural code.

Some examples of structural methods (covered below) include

temporal logic, axiomatic methods, and abstract data types.  In

general, structural methods have proven labor intensive, have

yielded inefficient proofs, and have been difficult for the

average software designer to master. [HOAR87]

The paragraphs that follow examine, one by one, some

promising formal methods.  Behavioral methods are considered

first, followed by structural methods.

A. Finite State Automata

Finite State Automata (FSA), also called Finite State

Machines (FSMs), represent system behavior as a set of states.

A FSA can be in only one state at a given moment, but can change

states in response to external events.  Such a model enables a

system to order its behavior in the face of random asynchronous
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events that may arrive from many sources.  Pure FSA, in most

practical applications, require a large number of states to

properly describe a system’s response to external events.  To

reduce this state-explosion problem, must useful FSA models have

been augmented to include predicates that guard the activation

of transitions between states based on historical information

that is retained in state history variables.  Perhaps these

points will become clear through considering an example.  An

example can also illustrate the graphical notation, called state

transition diagrams, typically used to represent FSA. 
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Figure V-1 shows a state transition diagram representing

the FSA for an automated gas pump.  Each rectangle enclosing a

label represents the state named by the label.  The set of

states in the example is: (Opened, Waiting Authorization,

Authorized, Dispensing, Waiting On Done, Waiting On Stopped,

Closed)  Transitions between states are shown as directed arcs

with the arrow head pointing to the new state and away from the

old state.  A single arc without an old state identifies the

initial state of the FSA (Opened in the example).  Each

transition is triggered by the arrival of an event. The set of

events in the example is: (Open, Close, Cash Not Okay, Not

Authorized, Credit Card Inserted, Cash Card Inserted, Cash Okay,

Authorized, Switch On, Switch Off, Stopped).  Each transition

can have an associated set of actions that are considered to

occur instantaneously as the transition fires.  In the example,

the set of actions is given in a box within the figure.  Each

action has a short label (e.g., T1, D1) and a descriptive name

(e.g., Authorize Transaction, Disable Gas Dispenser).  Also

shown are examples of predicates that guard a transition.  In

Figure V-1, predicates are bounded within square brackets (e.g.,

[Switch is On]).  Consider the state Waiting Authorization.

When the Cash Okay event arrives, two transitions are

potentially enabled: one transition moves the FSA to the state

Authorized and is guarded by the predicate [Switch is not On]

and the other transition moves the FSA to the state Dispensing

and is guarded by the predicate [Switch is On].

FSA, described with state transition diagrams, are

typically used to prescribe an acceptable sequential order in

which arriving external events can be processed.  While state

transition diagrams are most convenient for human comprehension,

other forms of FSA representation are better suited to machine

processing.  Commonly used encodings include: nested,

state-X-event, case statements in high-level programming
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languages and state-X-event tables that drive an FSM

interpreter. [KUUL91] Some high-level languages have been

modified to include constructs that directly represent FSMs.

[ISO92]

Once an FSA is described in a machine-processable form,

event-state-transition tracing tools can be used to verify that

the FSA captures the desired behavior; however, when extensive

use is made of predicates, the FSA must be translated into an

FSA that is predicate-free prior to applying the tracing tools.

The resulting FSA may explode into hundreds of thousands of

states and, thus, prove computationally difficult to verify.

For example, extended finite state machines are sometimes used

to specify the allowable behaviors in telecommunications

systems, and then automated tools are applied to generate

scenarios for system tests. [CAN85]  In these cases, human

intervention is required to eliminate the generation of

duplicate tests and to prune the resulting test set to an

acceptable size.

FSA enable concise specification of allowable sequences of

behavior in a form that is comprehensible to humans, yet that

can be translated straightforwardly into a machine-processible

encoding.  All of the described behavior is sequential and

applies to a flat, single task.  No provision exists for

describing timing nor concurrency among events.  These

shortcomings were addressed by researchers through a set of

extensions to FSMs that were proposed gradually over two or

three decades.

A first extension involved using multiple, communicating

finite state machines to model interactions between cooperating

sequential tasks.  This enabled concurrent tasks and task

synchronization to be modeled simply and efficiently.

Inter-task communications were then represented as asynchronous

events exchanged between FSMs.  Events arriving at a FSM were
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simply deposited into a FIFO queue and then processed

one-at-a-time.  A second extension allowed each state in a FSA

to be modeled with a nested FSA.  Introducing hierarchies of

FSMs assisted designers in managing complexity by allowing large

systems to be represented as compositions of simple FSMs, rather

than as a single, huge FSM.  Combining the first two extensions

permitted intrastate concurrency to be modeled by allowing

multiple FSMs to execute under that control of a parent FSM that

was itself embedded in the state of its own parent.  As the

number of cooperating FSMs to be modeled increased, the

difficulties of communication and synchronization between them

increased as well.

To harness the many extensions to FSMs and to introduce

some discipline into inter-FSM communications, a number of

formal models were developed during the 1980’s.  One such model,

Extended State Transition Language (Estelle) became an

international standard for describing communication protocols

and distributed systems. [ISO92]  This model will be considered

in some detail in section VI when design languages are

considered.  For now, Estelle can be understood as a model based

on communicating, finite state machines which exchange events

asynchronously through unidirectional channels.  The

communicating FSMs can operate as peers or in a parent-child

relationship.  Using the Estelle model, a number of inter-task

arrangements can be represented and then exercised through a

run-time environment.

Another model, Communicating Real-Time State Machines

(CRSM), provides a complete, executable notation for specifying

real-time systems. [SHAW92]  Event exchange between state

machines is modeled as synchronous communication across

unidirectional channels (along the lines of CSP, a language

described in section VI).  CRSM also includes a novel set of

facilities for describing timing properties.  Each transition
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action has an execution or synchronization time associated with

it.  Each FSM is augmented by a real-time clock machine that has

access to a global time source.  An underlying operational

semantics for executing a CRSM system manages the firing of

transitions and the modeling of the time intervals.  CSRM does

not permit shared data.  Although CSRM is one of the few FSA

models to include time, there are no facilities for structuring

a system of FSMs into higher level entities (a strength, for

example of Estelle) or for modeling interrupts (a common

shortcoming with FSMs because each transition is atomic).

Another advanced model based on FSA, called statecharts,

was invented by Harel in the 1980’s. [COLE92 ,HARE87, HARE90]  

Statecharts define a formal semantics for an advanced version of

extended FSA.  The advanced capabilities include hierarchical

nesting of FSA within individual states, concurrent execution of

multiple state machines within a single state, and broadcast

communication of events so that any event output from an FSM in

a statechart will be immediately visible to every other FSM in

the same statechart (and external events arriving into a

statechart are also visible to all FSMs in the statechart).

Statecharts also allow for non-determinism and timed

transitions.  Statecharts appear overly rich in features and

semantics, making them difficult for a designer to use and to

understand.  To overcome some of these difficulties, Harel has

proposed a set of tools called Statemate.

Statemate enables a designer to graphically specify,

analyze and design large, complex, reactive systems. [HARE90]  

Although the notation is graphical, the syntax and semantics are

formal.  A Statemate system description comprises three views:

structure, function, and behavior.  Each view can be expressed

with a separate graphical language.  The behavior language is

statecharts. [HARE87]  The system structure is described as a

hierarchical decomposition of modules and the information flows
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between them.  The structure language is called modulecharts.

The functional view is drawn, in a language called

activitycharts, as a set of data flow diagrams.  From the

combined descriptions of a system, Statemate can simulate the

system’s behavior or generate code to implement the system.  The

simulator can be used to evaluate reachability, to identify

non-determinism, to detect deadlocks, and to profile transition

usage.  The testing performed is truly a simulation and so a

designer can find errors but cannot prove the absence of errors.

Using Statemate for exhaustive testing is not feasible for most

real designs.  

Statemate appears to provide a simulation capability to

support a real-time structured analysis view of system design,

but with a more powerful representation of control transforms.

Some recent research aims to couple statecharts with

object-oriented concepts in order to marry the behavior modeling

capabilities of statecharts with the information modeling

concepts of object-oriented design.  The result is called

Objectcharts. [COLE92]

Objectcharts are an extended form of statechart that

characterize the behavior of a class as a finite state machine.

The design model in which objectcharts are embedded consists of

a configuration diagram (describing every object in a system by

its required and provided services) and an objectchart that is

similar to the object notation used by Rumbaugh, Booch, or Coad.

The innovation of objectcharts is to use statecharts to

represent object services that change the state of an object.

Services that do not change an object’s state are not described

with statecharts.  System behaviors can be generated by

combining individual object behaviors.  Objects communicate

using infinite, FIFO queues to hold incoming events.  The

behavior of each object can be specified using a trace of

incoming events and resulting output events.  Included in the
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system model is an intuitive definition of subtyping for

objectcharts, i.e.,  descendant classes may be specialized by:

1) adding a state/transition that corresponds to a new service,

2) strengthening the guard for a transition, and 3)

strengthening the invariant for an object.

From this description of the nature of FSA and some recent

research advances and supporting tools, the reader should come

away with a number of impressions.  First, FSA can be used to

represent cooperating tasks by describing each task with one

FSA.  Second, FSA do not generally include the notion of time.

Third, extended features such as guarded transitions and

hierarchical nesting of FSA enable a designer to better deal

with complexity; however, when such extended FSA are expanded

and flattened to facilitate machine analysis, state explosion

can make computational verification infeasible.  Fourth, no

agreement exists among researchers as to how inter-FSA

communication should be modeled.  Fifth, inter-FSA concurrency

can be modeled, but the synchronization between concurrent FSA

depends to a large extent on the specific model used for

inter-FSA communication.  Sixth, researchers are just beginning

to investigate means for integrating FSA into object-oriented

design models.

Another formal tool for modeling behavior includes FSA as a

subset.  This tool, called Petri nets after its inventor, Carl

Petri, is discussed next.

B. Petri nets

Petri nets can be used to model finite state machines, as

well as concurrent activities, dataflow computation,

communications protocols, synchronization control, and, if

inhibitor arcs are allowed in the Petri net (PN), producer-

consumer systems with priority. [MURA89]  A major strength of

PNs is their support, when computer-assisted tools are used, for
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analysis of many properties and problems associated with

concurrent systems.

PNs can be viewed as a 6-tuple, such that N =(P, T, E, M0,

K, W), where P is the set of places, T the set of transitions, E

the set of arcs, M0 the initial token marking, K the capacity

function, and W the weighting function. [MURA84]  P and T are

disjoint.  M0(p) yields the number of tokens initially at place

p. K(p) yields the token capacity of place p.  W(e) yields the

number of tokens transmitted along arc e.  In a so-called

ordinary PN all arcs have a weight of one.  In an ordinary PN, a

transition is eligible to fire when a token is present at each

of the transition’s input places.  Firing a transition results

in moving a token from each of the fired transition’s input

places  
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and placing a token in each output place associated with the

transition.  Whenever multiple transitions are eligible to fire,

one is selected non-deterministically.  (Note that firing rules

are different for various forms of PNs.)

PNs can be represented in a graphical form that enables a

human being to visualize the behavior represented by the net.  A

sizable example of a graphic PN is given in Figure V-2 where the

control behavior of a generic order processing system is

illustrated.  In Figure V-2, the dashed line represents the

boundary between the order processing system and its

environment.  The system has

two external inputs, the

places prod. changes and

order request, and three

external outputs, the places

rej. order, back order, and

acc. order.  Each place in

the order processing PN of

Figure V-2 represents some

system data and each

transition represents some

system function.  The

initial marking of the PN

probably includes tokens in

the places catalog and sales

log, as these are permanent data repositories associated with

the order processing system.

When a token arrives at prod. changes the update catalog

transition fires, returning a token to the catalog.  Note that a

token could also arrive at order request, enabling the

transition pre. sales order.  Should a token arrive

simultaneously at both prod changes and order request, one of the
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two transitions would be selected to fire and then the other.

This arrangement of transitions represents mutual exclusion

between the functions 

update catalog and pre. sales order.  When pre. sales order

fires, a token is removed from the places catalog and order

request and tokens are entered at the places sales order2, sales

order1, and catalog.

The existence of both places sales order2 and sales order1

represent the fact that when an order request is received two

actions can take place concurrently: the sales log can be

updated and the order can be processed.  (In PNs, two arcs

leaving a transition denote parallelism.)

Consider now what occurs in Figure V-2 when a token arrives

at sales order1.  Here, two arcs leave the place.  In PNs, this

represents a decision because only one of the two transitions
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Ordinary PN All arcs are of weight one.

State Machine Ordinary PN where each transition has
exactly one input place and one output
place.

Marked Graph Ordinary PN where each place has exactly
one input transition and one output
transition.

Free-Choice Net Ordinary PN where every arc from a place
is either a unique outgoing arc or a
unique incoming arc to a transition.

Extended Free-
Choice Net

When two sets of places P1 and P2
intersect, the implication is that P1 =
P2.

Asymmetric-
Choice Net

When two sets of places P1 and P2
intersect, the implication is that P1 is a
proper subset of P2 or P2 is a proper
subset of P1. 

  Table V-1.  Classifications of Ordinary Petri nets



can fire, and when one does the other will be disabled.  The two

arcs leaving sales order1 represent the cases where: 1) a

customer has insufficient credit and thus the order is rejected
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Reachability
Can all token markings be reached?

Boundedness
Are the number of tokens in each place
finite?

Liveness
Will at least one transition always be
enabled?

Reversibility
For every possible marking, can the initial
marking be reached?

Coverability
Can all potential markings by reached?

Persistence
For every transition, does the firing of
the transition  disable another transition?

Synchronic 
Distance

A measure of how often the firing of one
transition is related to the firing of
another.

Fairness A measure of how often transitions get to
fire relative to other transitions.

Structural
Liveness

Does there exist a live initial marking?

Control-
lability

Can any marking be reached from any other
marking?

Structural
Boundedness

Is the net bounded for any finite initial
marking?

Conservative-
ness

Are all initial tokens conserved?

Repetitiveness Is there an initial marking such that every
(or some specific) transition occurs
infinitely often in a firing sequence?

Consistency Is there a firing sequence such that every
(or some specific) transition occurs at
least once?

 Table V-2.  Petri net Analysis Properties



and 2) a customer has sufficient credit and thus the order can

be further processed.

Another feature of PNs is illustrated in Figure V-2 at the

transition check credit2.  Here a transition is represented by

another PN in a hierarchical fashion.  The PN that substitutes

it2 is shown, bounded by a dashed rectangle, in Figure V-3.

Here a credit file possesses a permanent token.   Upon entering

the transition, two parallel paths are taken: one finds the

customer’s credit limit and the other determines the order

value.  Before leaving the nested transition, the credit limit

and order for check cred value are synchronized as inputs to the

transition check credit availability.

Returning to the large PN of Figure V-2, the reader should

note that, though the two paths out of sales order1 are mutually

exclusive, no information exists at place sales order1 to enable

the appropriate path to be determined.  This should remind the

reader that PNs allow the representation of valid behaviors, but

do not specify what conditions will cause which of the valid

behaviors to occur.

Ordinary Petri nets can be restricted to limit the range of

systems that can be modeled.  A summary of the classes of

restricted PNs as related to ordinary PNs is shown in Table V-1.

State machines allow no concurrency nor synchronization to be

represented.  Marked graphs cannot depict choice because they

allow no conflicts between enabled transitions.  Free-choice

nets cannot show confusion (i.e., a mix of conflict and

concurrency).  Asymmetric choice nets allow an asymmetric

confusion, but disallow symmetric confusion. 

PNs can be subjected to a number of analyses as indicated

in Table V-2. [MURA89]  To investigate the properties listed in

Table V-2, three analysis methods are generally used.  One

common method involves generating a coverability tree.  When a

PN is unbounded, its associated coverability tree will become
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infinitely large.  To prevent this infinite path explosion, most

analysis methods introduce a symbol to represent infinite

behavior and then curtail each branch of the coverability tree

once an infinite behavior is recognized.  A second analysis

technique represents PNs as an incidence matrix, coupled with a

set of state equations.  This technique is somewhat limited due

to the non-deterministic nature of PNs.  A third analysis method

represents a PN as a set of simple reduction rules, a less

complex abstraction that still captures the behavior encoded in

the PN.  All of these analysis methods are limited by the

natural complexity inherent in PNs.  A "...major weakness of

Petri nets is the complexity problem, i.e., Petri-net-based

models then to become too large for analysis even for a

modest-size system." [MURA89, p. 542.]  In addition, graphical

PN models usually prove inconvenient when used to specify the

behavior of large systems.  To overcome this inconvenience, a

class of nets called High Level Petri nets have been proposed by

several researchers.
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                 Queue [DOTA91, p. 500]



High Level Petri nets (HLPNs) raise the abstraction power

of PNs by attaching semantic distinctions to tokens (for

example, giving them types, sometimes called colors) and by

associating predicates with incoming and outgoing transition

arcs that allow typed tokens to be manipulated when a transition

fires.  HLPNs may be called predicate/transition nets or colored

PNs depending upon the exact nature of the extensions.  An

example of a colored PN, shown in Figure V-4, can illustrate

some of the concepts involved.

In Figure V-4, places represent free slots (p1) or full

slots (p2) in a job queue.  Transitions depict adding a job to

the queue (t1), advancing a job one place ahead in the queue

(t2), or removing a job from the queue (t3).  Tokens come in

four colors:  E = {ek | k = 1,2,...,n}, where ek indicates that

the kth place in the queue is empty; J = {ji | i = 1,2,...,p},

the set of jobs; Q = {<ji, ek> | i = 1,2,...,p; k = 2,...n},

where a token of <ji, ek> indicates that job i occupies slot k

in the queue; S = {<ji, e1> | i = 1,2,...,p}, where job i

occupies the first slot in the queue.  The initial marking of

the HLPN finds no tokens in p2 and n tokens (one for each color

e1...en) in p1.

Transition t1 is enabled if p1 contains a token that

satisfies the predicate TAIL(ji)= en (i.e., the last slot in the

queue is empty).  When t1 fires, a token of color en is removed

from p1 and a token of color <ji, en> (PUT(ji) = <ji, en>) is

put at p2.  Transition t2 depicts the movement of jobs in the

queue.  When a slot becomes empty, t2 fires, freeing slot ek and

moving job ji to slot ek-1.  Transition t3 fires to remove a job

from the queue.

When the number of colors is finite, a HLPN can be

considered to consist of a structurally folded version of a

regular PN.  This ability to transform HLPNs into ordinary form

is crucial to the analysis of the net because HLPNs cannot be
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subjected to the same analytical methods as ordinary PNs.

[PAPE92]  The reader should notice, from reviewing Figure V-4,

that, while possessing a useful level of specification

convenience, HLPNs sacrifice some of the visual power of

ordinary PNs. [PAPE92]  Another shortcoming of HLPNs, a

shortcoming shared with ordinary PNs, is an inability to model

time.  Several researchers investigate methods for representing

time in PNs.

Two basic approaches exist for including time into PN

models: 1) timed PNs and 2) time PNs. [BERT91]  Timed PNs

associate a firing duration with each transition.  Time PNs

allow two numbers, (a, b), to be associated with each

transition, where a, (a >= 0), is the minimum time that must

elapse from when a transition is enabled until is fires and b,

(0 <= b <= infinity), denotes the maximum time during which a

transition can be enabled without being fired.  Time PNs are

more general than timed PNs and, thus, most researchers work

with time PNs. [BALB92, BERT91, GHEZ91, YAO89]1  In general, time

is used in PNs in two ways.  One way depicts time delays as

deterministic values and the other way, so-called stochastic PNs

(SPNs), depicts time delays as probabilistic values.  SPNs can

be mapped into Markov chains. [MURA89]  SPNs have been extended

to a class of generalized SPNs (GSPNs) to manage the state space

explosion that occurs with complex PNs. [BALB92, MURA89]  The

specific approach used will depend upon the performance

properties of interest to the analyst.  

1 Note that other lesser used approaches to adding time to
PNs also exist. [GHEZ91]  For example, an idle time value can be
attached to each place, requiring that input tokens become
available only after the idle time has passed.  As another
example, clock mechanisms can modeled by means of
predicate/transition PNs.  These are not described in the
present paper, and the reader should rest assured that not every
extant variation of PNs, timed or otherwise, is covered here.
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Deterministic timed PNs are used to estimate the minimum

time needed for each major path or cycle through a system.

[YAO89]  To apply this approach, the analyst must first develop

a PN model from a detailed statement of the system logic.  Then

the PN must be reduced to only the places and transitions

affecting the performance of the system.  The reduced PN must

then be organized into the major control cycles of the system.

Once specification, reduction, and organization are complete,

time PNs can yield estimates for the best- and worst-case cycle

time for the system.  When applying these techniques, Yao found

that automatic and semiautomatic tools must be developed to aid

in the analysis of large systems because PNs do not scale up

well. [YA089]

Berthomieu and Diaz have proposed using enumerative

analysis to simultaneously model behavior and analyze properties

of time PNs. [BERT91]  Unfortunately, they have encountered some

of the same limitations cited by Yao.  "As enumerative

approaches for analyzing Petri nets can produce large sets of

classes, even when the net is bounded, Petri net experts must be

able to create nets with manageable numbers of classes when this

can be done." [BERT91, p. 271]  Berthomieu and Diaz also point

out that reachability and boundedness determination for time PNs

are undecidable.  One other limitation of their approach is that

firing transitions takes no time to complete, and so if the

firing time is important, then it must be included in the time

label for at least one timed transition.  This adjustment tends

to obscure the natural representation of the system timing

model.

While deterministic time PNs have been used with some

success, stochastic PNs are more controversial. [MURA89]  

Acceptance of GSPNs is limited by the difficulty in constructing

appropriate models and by the complexity inherent in the

solution of the models. [CHIO93]  Balbo, et al., illustrate how
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colored, generalized SPNs (CGSPNs) can be used to study both the

correctness and performance of a system.  [BALB92] They apply

CGSPNs to study Lamport’s concurrent algorithm for providing

mutual exclusion on CPUs that lack an atomic test-and-set

instruction.  They discovered several areas that need further

investigation.  For example, a PN model may be too complex to

analyze exactly for large numbers of basic colors.  Further, the

labor involved in mapping a problem to a colored PN and then to

a GSPN is too great and too error prone; thus, they advocate

investigation of tools for automatic generation of a CPN from a

system specification and also further research regarding

formalization of techniques for deriving correctness proofs.

Chiola, et al., also investigate how PNs might be used to

analyze both behavior and performance, but their approach begins

with a GSPN and then attempts to derive some behavioral PNs by

eliminating timing from the GSPN model. [CHIO93] The novelty of

their approach is based on their claim to have obtained the

first structural analysis of PNs with both priorities and

inhibitor arcs.  They also identify some problems inherent in

PNs, generally, and GSPNs specifically.  For one, real system

models result in graphically complex PNs.  For another, the

complexity of GSPN models of real systems appears too great to

allow feasible modeling at a reasonable cost.

Perhaps the most ambitious attempt to integrate the

behavioral, functional, and time representation in PNs is

reported by Ghezzi, et al. [GHEZ91]  Ghezzi introduces

environment/relationship nets (ERnets), HLPNs that can be used

to specify control, function, and time.  The main idea behind

ERnets defines tokens as environments that are really functions

associating values to variables.  An action is associated with

each transition. Each action can also describe the input

environments required by the transition and the output

environments produced.  Time is introduced to ERnets by
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including a timestamp with each environment.  Whenever an action

is invoked (by firing a transition), the action must produce a

value for the timestamp associated with the output environment.

Three simple rules must be observed for producing the new

timestamps:  1) the output timestamp must exceed the timestamps

of the input environment, 2) each output environment produced by

the same transition firing will have the same timestamp, and 3)

transition firings in sequences must produce monotonically

non-decreasing timestamps.

From the basic time rules introduced into ERnets a number

of PNs with time added can be modeled.  The most basic net,

called Timed ERnets (TERnets), enforces a weak time model where

enabled transitions are not required to fire.  A variant, called

Strong TERnets (STERnets), requires that an enabled transition

must fire within its due time (i.e., no other firing can disable

a transition).  Another variant, called TBnets, represents a

particular case of TERnets, but where only tokens (not

environments) are timed.  TBnets are introduced so that Ghezzi

can show how existing approaches to adding time to PNs can be

modeled with TBnets (and thus that his work represents a

superset of all other approaches).

While Ghezzi’s approach provides some remarkable

integration and extension of existing PN models, the reader

should already suspect that some drawbacks exist.  For one, the

main analysis aid is a tool for executing ERnet specifications.

With such a tool, problems can be detected, but the absence of

problems cannot be proven.  Ghezzi shows that proving the

properties of ERnets is undecidable.  He does point out that, by

ignoring tokens, standard PN analysis techniques can be applied

to give an approximate analysis.

The reader will have noted that Ghezzi, and many of the

researchers and practitioners discussed above, cite the need for

automated assistance.  For complex PNs, exhaustive analysis, in
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order to establish the existence of specific properties, is

often deemed computationally infeasible.  For that reason, much

of the practical research regarding PN tools aims at methods for

creating PN models and then for exercising those models to

detect errors or to characterize performance.  In the following

paragraphs, some of this research is reviewed.

One interesting tool, the Expert System-based PN Simulator

(ESPNET), takes a timed PN as input and produces a simulator (in

the OPS5 language) as output. [DUGG88]  The PN can then be

exercised.  ESPNET, positioned as a pre-simulation tool, has

been applied to generate rapid prototypes of flexible

manufacturing systems.

Another approach allows a user to specify a system of

hierarchical, colored PNs, to indicate the commands to and

events from outside the system, and to describe guards on arcs

flowing into transitions. [MICO90]  Then, using a TOol for RApid

prototyping (TORA), the user can exercise his system

specification.  TORA consists of three subsystems: 1) an

interpreter of colored PNs, 2) a hierarchical user interface,

and 3) a flexible manufacturing system environment to simulate

the system’s external world.  TORA permits parallelism to be

represented visually, and enables a specification to be

manipulated symbolically.  All communication between PNs, and

between PNs and the environment, are modeled asynchronously.

TORA is another tool that enables a PN to be exercised, rather

than analyzed.

Another approach applies hierarchical PNs to animate data

flow diagrams (DFD). [LAUS89]  Here, each leaf node of a given

DFD is treated as a PN.  Then, as required, terminators in  one

PN are mapped to initiators of another PN.  The outside world is

also mapped to appropriate initiators and the DFD’s terminations

are mapped to the outside world.  Using this approach, PNs

enable a DFD to be exercised.
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PNs are often implemented using some form of Prolog.

Recent research shows that flat concurrent Prolog (FCP) can be

used to execute directly HLPNs. [DOTA91]  FCP can also be used

to simulate hierarchical systems of PNs and to describe and

simulate timed PNs.  These models can also be integrated.  Since

all PNs that are represented with FCP are guaranteed to be

finite, some analysis can be performed on such PNs.  Achievable

analyses include: 1) loop-free-ness, 2) decision-free-ness, 3)

consistency, and 4) determining whether a PN is synchronous or

asynchronous.  In addition, dynamic execution of an FCP PN can

assess: 1) reachability, 2) ambiguity, 3) boundedness, 4)

resource conservation, 5) conflicts, and 6) liveness.  Although

these analyses are desirable, FCP simulation of complex PNs is

not yet feasible because the execution performance of concurrent

logic programs is poor.

A different approach to specification and analysis of PNs

is taken by Willson and Krogh. [WILL90]  Their goal is to enable

a user to specify a system’s behavior, to generate models from

that specification, and to conduct an efficient and meaningful

analysis of the properties of the specification.  They describe

a rule-based specification language consisting of discrete state

variables and state transition rules.  They generate, from the

specification language, PN models, represented in incidence

matrix form, that include timing and stochastic selection

choices.  They support analysis with a tool that allows a user

to specify a submarking of the PN that is of interest and then

to perform a reduced reachability analysis.  This approach

attempts to enable exhaustive analysis by allowing the user to

specify those behaviors that are critical.

Some recent work attempts to marry PNs and simulation

models.  Taqi, et al., illustrate techniques for converting SLAM

(Simulation Language for Alternative Modeling) models to PNs and

vice versa. [TAQI92]  These techniques aim at two objectives: 1)
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providing an automated means of analyzing PNs and 2) devising a

method to pictorially represent complex SLAM models.  To

accomplish objective one, PN models are translated into SLAM

nodes for create, queue, activity, and terminate functions.  To

accomplish objective two, PNs composed of a very restricted set

of representations can be mapped to their corresponding SLAM

nodes.

A similar approach is reported by Sakthivel and Agrawal,

but for GPSS (General Purpose Simulation System) models.

[SAKT92]  Here, the simulation blocks permitted include

generate, terminate, and seize.  In addition, the translation is

only one-way, from PN to GPSS.

To close the discussion of Petri net models, the strength’s

and weaknesses of PNs are recapitulated.  The very general

nature of PNs is a major source of strength and weakness.  PNs

are based on a strong mathematical footing that enables a range

of analyses.  PNs can also

represent many system

behaviors, including

concurrency, synchronization,

non-determinism, timing, and

function.  Unfortunately, PNs

entail substantial complexity

when representing complex

systems.  And, when complex

systems are modeled, the analyses that are theoretically

possible with PNs become computationally infeasible.  Complex

PNs also weaken the graphical clarity that normally attends a PN

model.  To enable PNs to increase their expressive power, and to

incorporate time, many different approaches are proposed by

researchers.  This results in difficulties for practitioners who

wish to apply PNs to specific problems.  No particular PN

extension is better necessarily than another, and thus a
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practitioner must carefully consider the purpose of his modeling

against the capabilities of various proposed PN extensions and

also against the set of tools available to assist in analyzing

or exercising PNs that incorporate extensions.  Although

invented in 1962, PNs remain immature as a means of specifying

system behavior.

C. Temporal Ordering

Temporal ordering describes a behavior by specifying valid

sequences of actions that occur in response to external events.

[ISO87]  This form of specifying behavior has its roots in

Milner’s calculus of communicating systems (CCS).  Behaviors can

involve choice (both deterministic and non-deterministic)
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process simplex-duplex-buffer[in-a, in-b, out-a, out-b] :=
  in-a; (in-b; (out-a; out-b; stop
              [] out-b; out-a; stop)
       [] out-a; in-b; out-b; stop)
   [] in-b; (in-a; (out-b; out-a; stop
              [] out-a; out-b; stop)
       [] out-b; in-a; out-a; stop)
end process

(a) Temporal Ordering Using Choice Of Sequences

process simplex-duplex-buffer[in-a, in-b, out-a, out-b] :=
  one_time_buffer[in-a, out-a]
 ||| one_time_buffer[in-b, out-b]
where
    process one_time_buffer[in, out] :=
      in; out; stop
    end process
end process

(b) Temporal Ordering Using Process Encapsulation And          
  Parallelism

Figure V-6.  Temporal Ordering Specifications For A Simplex-



between alternate sequences of actions, parallelism among

multiple sequences, and synchronization between sequences.  To

enable repetitive event/behavior patterns to be represented

concisely, named processes can encapsulate sequences.  To better

explain this approach, an example is used.

Figure V-5 depicts a simplex-duplex-buffer that can accept

a message on two simplex input channels (A-in and B-in) and will

copy the message on the corresponding output channel (A-out and

B-out).  The input messages can occur in any order and the

output is in no prescribed order.

One means to specify, using temporal ordering, the required

behavior of the buffer in Figure V-5 is to describe the allowed

possible sequences of events, as shown in Figure V-6 (a).  The

process is named simplex-duplex-buffer and has four parameters -

one for each port.  The ; and [] operators denote sequence and

choice, respectively.  As the reader can easily see, either

event in-a or in-b can occur first.  Listed after each event is

the sequence of actions/events that can occur after the initial

event occurs.

Figure V-6 (b) shows an alternative specification of the

same behaviors, but relying on process encapsulation (nesting

one process within another) and the parallel operator, |||.

Here, a process, one_time_buffer, is defined to model the

sequential behavior of one channel and then this process is

instantiated twice, once for the a-channel and once for the

b-channel.  The instantiations then operate in parallel.  The

described behavior is the same as for the explicit specification

given in Figure V-6 (a).

To increase the specification power of temporal ordering a

number of operators are usually allowed.2  In addition to

2 Here, temporal ordering draws on the specific
implementation known as LOTOS. [ISO87] LOTOS is perhaps the most
ambitious and advanced language for writing temporal ordering
specifications.  LOTOS is considered specifically in section VI,
Languages For Designers.
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sequence of actions (;), choice of sequences ([]), and

parallelism among processes (|||), temporal ordering can support

synchronization among subprocesses (||), sequential composition

of processes (>>), and process disabling ([>).  For at least one

temporal ordering language, LOTOS, a graphical notation,

G-LOTOS, has also been defined. [ISO92]

One use of temporal ordering specifically targets the Ada

language. [ROSE91]  Rosenblum describes a task sequencing

language (TSL) that allows a user to specify acceptable task

sequencing at a high level of abstraction and then to annotate

Ada programs with TSL statements that embody the specification.

Once proper TSL statements are embedded as comments in an Ada

program, a set of compile-time and run-time tools can be used to

monitor program behavior for conformance with the specification.

During run-time, an Ada program, when properly instrumented,

outputs significant specification events to a user-controlled

monitor.  The monitor compares the sequence of events received

with the specification of allowable sequences.
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Figure V-7.  A Classification Of Prototyping By Reason And
                Components [MAYH87]



Using TSL with Ada programs comes with a set of problems

that apply to most temporal ordering approaches.  First, the set

of allowed sequences is difficult to specify.  The run-time

monitoring will not detect specification errors; only

differences between the specification and actual run-time

behavior can be detected.  Second, a running system typically

generates many sequences of events;  merging events into proper

order is difficult and, in fact, cannot be accomplished

flawlessly from outside of the run-time system.  Third, temporal

ordering, as the name implies, captures only the relative

ordering among events.  Temporal ordering cannot deal with

timing constraints, e.g., event A must occur with 3 ms of event

B.

D. Modeling and Simulation

"During the past few years there has been an

ever-increasing awareness that a static paper description of a

computer-based information systems, however formally specified

or rigorously defined, is far from adequate for communicating

the dynamics of the situation." [MAYH87, p. 481]  "Predicting

the behavior of real-time applications, particularly in abnormal

situations, gets more difficult as the applications become more

complex." [HARD88, p. 48]  "Because of the size of many real

systems, simulation and prototyping may be the only practical

forms of analysis." [CAME91, p. 562]  For these reasons, system

developers are turning, more often than in past years, to the

construction of prototype and simulation models to animate

system specifications and designs. [BROW88]  In fact, although

prototypes and simulation models are traditionally treated as

separate tools for addressing different problems, some recent

work proposes that simulation models and various forms of

prototypes should be viewed as part of an integrated toolbox of

approaches for exploring a system’s characteristics.  Figure V-7

illustrates this view.
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The prototyping classification in Figure V-7, due to Mayhew

and Dearnley, nicely captures several aspects of prototyping.

First, prototyping involves various components including the

user, the prototyper (e.g., the designer or analyst), the

software, and the hardware.  Second, prototyping can be

motivated by different reasons.  Depending on the reason for

building a prototype, different components will be involved and

some, shown in Figure V-7 in bold typeface, may be emphasized.

The classifications of direct interest in the present paper

involve the prototyper and the software.  Those classifications

include exploratory, experimental, and performance.  The purpose

of exploratory modeling is to elicit and refine the logical

requirements of the system.  Experimental prototyping

encompasses exercising essential aspects of or alternate

proposals for the system design.  Performance modeling is a

special case of experimental prototyping with emphasis placed on

evaluating the system under load.  In the paragraphs that

follow, a variety of approaches to specification and design

modeling are considered.

E. Executable Specifications

One method of system modeling entails describing a system’s

requirements in a formal specification language and then

exercising the specification to assess various interesting

properties.  Several researchers have proposed languages and

run-time environments for modeling system specifications.  The

present paper considers those proposals intended for distributed

and real-time systems.

Zave developed a Process-oriented, Application and

Interpretable Specification Language (PAISLey) intended to

validate the feasibility of requirements and to act as an

executable design. [ZAVE82, ZAVE86]  PAISLey merges asynchronous

processes with functional programming processes represented as

finite state machines.  Inter-process communication is handled
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via exchange functions that model a rendezvous.  As described in

1986, PAISLey possessed seven significant features.  First,

PAISLey allowed modeling of maximal parallelism between

processes.  The only restriction on parallelism requires that a

process, internally, must be synchronized at the end of each

process step.  No other language, at the time, allowed both

synchronous and asynchronous parallelism free from concern with

mutual exclusion.3  A second significant feature of PAISLey is

encapsulated computation, i.e., every action, except for

inter-process exchanges, in a PAISLey specification is a

mathematical function.  Another useful feature is the tolerance

of incompleteness.  The PAISLey run-time can choose among a

possible set of function evaluations when none is explicitly

defined.  The run-time system can also query the user for the

missing evaluations.  A fourth feature of value is PAISLey’s

ability to evaluate timing constraints.  Any function can be

augmented with a time variable denoting an upper or lower bound,

a distribution, or all three.  The interpreter then honors

timing constraints where possible and reports failures.  The

specified timing constraints are combined with a model of system

overhead to enable a specification to be assessed for

performance.  The PAISLey interpreter also ensures, when the

specifier restricts use of recursion, that specifications can be

executed within a bounded space and time.  No process can be

starved by the interpreter because every event is executed on a

FIFO basis.

A sixth significant feature of PAISLey is consistency

checking.  Of course, many of the conditions that cause

undefined program states during execution cannot occur in

PAISLey specifications because the language and interpreter are

3 Functional languages have no asynchronous processes.
Languages such as CSP represent processes as sequential.
Languages such as Ada allow shared variables and thus face
problems with mutually exclusive access.
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defined to avoid or account for such conditions.  PAISLey can,

however, check for timing constraints and for system deadlock.

A final feature attributed to PAISLey is ease of specification.

The syntax includes set expressions (using only three

operators), mapping expressions (using three combining forms),

timing constraints, and a single, replication notation.

For all its significant features, PAISLey also exhibits

some interesting shortcomings.  For example, PAISLey

specifications are operational, specifying how, not what.  This

means that users must specify a system with too much precision.

If one chooses to view PAISLey as a means to execute designs,

then the inefficiency of the interpreter becomes a problem.  In

summary, PAISLey models fall somewhere between a requirements

and design specification.  The result is largely unsatisfactory

for both purposes.

Lee and Sluzier describe an executable language, SXL, for

modeling simple behavior that aims directly at modeling

requirements. [LEE91]  SXL encompasses a state transition

language.  Each model may include invariants and each transition

in a model has associated pre- and post-conditions.  The

invariants and other constraints are expressed with a

combination of entity-relationship (E-R) structures and

quantified, first-order logic.  The finite state machine (FSM)

interpreter underlying SXL is implemented in Prolog.  SXL cannot

model parallel systems because each specification consists of a

single FSM.  Using SXL an analyst builds a specification by:  1)

deriving an E-R model of the requirements, 2) expressing the

model as SXL objects and facts, and 3) mapping transitions from

an informal requirements description to SXL events, transitions,

and constraints.  The most significant benefit from using SXL,

as reported by Lee and Sluzier, is that, while building an SXL

model, incomplete, inconsistent, and ambiguous requirements are

often uncovered.
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A recently devised specification language, L.0, targets

descriptions of protocols and similar reactive systems. [CAME91]

L.0 is a rule-based system (where rules can be activated and

deactivated dynamically and several rules may fire

simultaneously), that includes encapsulation, data sharing,

indirection, quantification, and recursive definition.  L.0

rules are of two forms: cause-effect and constraints.

Cause-effect rules provide three general semantics:  1) once

<event> then <effect>, 2) until <event> then <effect>, and 3)

whenever <event> then <effect>.  Constraint rules simply capture

invariants, using a maintain <predicate> syntax.  L.0 modules

comprise named rule-sets that can be suspended, resumed,

removed, and activated.  Parallelism among rules and modules is

permitted, as well as a limited degree of non-determinism.  For

a simple protocol specification, an L.0 rule-space contains

between 300 and 400 cause-effect rules.  On average, 3% of these

rules are triggered at each program step.  L.0 supports

simulation and prototyping because state explosion within

protocol specifications makes verification a difficult problem.

The executable specification approaches covered thus far

require the analyst to learn the syntax and semantics of an

unfamiliar language.  A different approach, described by

Harding, uses a set of computer-aided software engineering

(CASE) tools, under the name Foresight, to model specifications

of embedded systems. [HARD88]  The CASE tools include graphic

editors, supporting the notation from structured analysis and

design technique (SADT) with real-time extensions, that allow an

analyst to create two models.  The functional model describes

the basic system logical operation.  The constraint model

specifies time-critical relations between the system and

external events.  The CASE environment includes tools for

generating executable models, including models of both hardware

and software, from static specifications and then to assess the
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performance of the system.  By relying on SADT notation,

Foresight sacrifices the precise semantics available with other

languages, but gains a user interface that most analysts find

familiar.

One final approach to executable specifications deserves

mention because of its uniqueness.  Nota and Pacini view the

inspection of software behavior as a process of querying

executable specifications. [NOTA92]  Using queries, an analyst

can isolate the subclass of possible behaviors to a critical set

that might possibly be subjected to an exhaustive analysis.

Nota and Pacini define a query language, RSQ, that allows

analysts to construct queries against executable specifications

that are expressed in a language called RSF.  This approach is

similar to selecting a reduced reachability graph for a Petri

net.

An alternative to using executable specifications is to

transform specifications into prototypes via a translation.

Transformable specifications are discussed next.

F. Transformable Specifications

Transformable specifications typically enable an analyst to

describe the essential characteristics of a system design in a
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very high-level language that can subsequently be translated

into an executable system.  The executable system usually

consists of modules coded in a high-level programming language.

Some of the executable modules are generated from the high-level

specification, while others are extracted from a library of

commonly used components.  Three examples are described below.

Luqi describes a computer-assisted prototyping system

(CAPS) for generating a color, multi-window command and control

application. [LUQI92]  The generated prototype consists of Ada

code.  The intent of CAPS prototypes is threefold: 1) to

evaluate the structure and performance of a proposed design, 2)

to refine the system requirements, and 3) to assess the

feasibility of the functional specification.  CAPS encompasses a

number of components as shown in Figure V-8.

Designers specify, using the Prototype System Description

Language (PDSL), the following elements: 1) functions, 2) data

streams (that link functions together), 3) maximum function

response times, 4) function triggers, 5) function output

messages, 6) a reference to the system requirements

specification, and 7) execution time estimates for each

function.  Using the provided information, the CAPS static

scheduler generates a feasible schedule (if one exists) for a

cyclic executive.  The CAPS translator generates Ada code and

then binds together the generated code with any needed

components from the CAPS Ada library.  The CAPS dynamic

scheduler is used to allocate any excess time (i.e., time not

required to meet the static schedule) to non-critical system

functions.  The CAPS debugger monitors the system constraints as

the prototype executes and enables the designer to make

adjustments while the system is running.  To construct a

prototype, the designer typically uses the steps shown in Table

V-3.
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Although all of the CAPS functions illustrated in Figure

V-8 have not yet been implemented, CAPS has successfully

produced Ada prototypes of command and control systems.  The

prototypes were produced quickly and with low cost. [LUQI92]  

Some shortcomings of CAPS are also reported.  CAPS does not

address distributed systems because three issues remain

unsolved: 1) no method exists to evaluate global timing

constraints (such a method is necessary to generate

complementary schedulers among multiple nodes), 2) no method

exists to bound the delivery times on messages exchanged between

nodes, and 3) no methods exist to detect or prevent deadlocks

between nodes.

A different approach to generating prototypes, described by

Sahraoui and Ould-Kaddour, proposes writing sequential tasks in

Modula-2 and describing task interactions with an extended Petri
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net model, called Petri nets with objects (PNO). [SAHR92]  The

PNO model is supported with a language, LMT, that allows PNO

 Table V-3.  Producing A Prototype With CAPS

1
 Designer draws the system computation graphs (i.e., DFDs).

2
 CAPS editor generates skeleton PDSL code.

3
 Designer modifies PDSL skeletons to produce a prototype   
 description.

4
 CAPS translator produces Ada packages that instantiate    
 data streams, system reads and writes, and function       
 executions.  Interfaces to the static scheduler are also  
 generated.

5
 CAPS static scheduler searches for a feasible schedule    
 and, if found, generates an Ada package with the static   
 schedule represented as a task.

6
 CAPS dynamic scheduler produces an Ada package            
 encapsulating a dynamic schedule for non-critical         
 functions.

7
 Designer writes any necessary Ada code that is not        
 available in the CAPS Ada library.

8
 CAPS compiles the Ada code and then loads the system and  
 starts execution.

9
 System users observe and evaluate the prototype results.

10  Designer modifies the prototype as necessary.

11  Once the prototype behavior is acceptable, the code is    
 optimized and ported to the target system.

specifications to be translated into an executable form for

analysis and interpretation.  The PNO model replaces PN tokens

with objects that possess a semantic meaning.  When a transition

fires an object is removed from the incoming place and an object

is produced at the outgoing place.  For modeling multitasking

systems, PNO transitions represent a precondition and an

associated action, tokens portray messages, and places model

tasks (written in Modula-2), mailboxes, and synchronization

points.  Figure V-9 provides an idea of how the Modula-2 and

PNO/LMT environments are integrated.
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Another approach to transformational prototyping involves

translating temporal ordering specifications (in LOTOS, see

section VI), into C functions which are then executed by

cooperating processes in UNIX. [VALE93]  Each LOTOS process

definition is translated into an extended FSM.4  The multi-way

rendezvous included in the LOTOS language is implemented via an

algorithm based on inter-process message passing.  No support is

provided for translating LOTOS abstract data types. (See later

parts of section V and see also section VI for information on

abstract data types and LOTOS.)  To build prototypes using this

method, LOTOS specifications must be free from unbounded

recursions.

A hybrid approach to prototyping with transformational

specifications is advocated by Choppy and Kaplan. [CHOP90]  They

propose a method for incremental development of large, modular

software systems.  Modules comprising a system may interact even

when the modules exist at different states of development.  Each

module may be fully abstract (existing solely as an algebraic

specification), may be fully concrete (implemented in a

programming language), or at a mix of points between abstraction

and concreteness.  They define an algebraic language (PLUSS)

through which axioms can be constructed as Horn clauses built

over equations or predicates.  They also describe an execution

environment, ASSPEGIQUE, that can perform mixed evaluation of

Horn clauses augmented with concrete implementations.  The

concrete portions are implemented in Ada.

G. Testbed-Based Prototyping

4 This reveals an interesting relationship between temporal
ordering and finite state automata (FSA).  Temporal ordering
specifications describe allowable behaviors but provide no clue
as to generating a system that exhibits such behaviors.  Systems
that behave according to an extended FSA are easy to generate
but verifying that an observable sequence of external events
conforms to a given extended FSA remains a difficult problem.
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Chu, et al., advise that prototypes can be used to best

advantage when experimental implementations are exercised in

testbed environments.  "Testbeds can be configured to represent

the operating environments and input scenarios more accurately

that software simulation.  Therefore, testbed-based evaluation

provides more accurate results than simulation and yields

greater insights into the characteristics and limitations of

proposed concepts." [CHU87]  Chu describes two tightly-coupled,

multi-computer testbeds that provide efficient inter-node

communication and full connectivity among processors and memory.

The testbeds can support the validation of design techniques for

distributed, real-time systems.  Chu reports on using the

testbeds to study the behavior of: 1) distributed algorithms, 2)

recovery schemes, 3) distributed database locking techniques,

and 4) update strategies for replicated data.  Testbeds can

provide realistic modeling of distribution; however,

constructing and maintaining testbeds of sufficient flexibility

can be expensive.  In addition, the construction of prototypes

in testbeds can also prove labor-intensive.

H. Simulation

Simulation is a form of prototyping particularly

appropriate for system performance evaluation.  "Simulation is

the process of designing a model of a real system and conducting

experiments with this model with the purpose of either

understanding the behavior of the system or of evaluating

various strategies...for the operation of the system." [ZEIG84,

p. 2]  Simulation presents an analyst with three difficult

problems: 1) choosing a level of detail in the model compatible

with the analyst’s modeling objectives, 2) verifying that the

model accurately represents the modeled behavior, and 3)

validating that the model reflects the behavior of interest.

In general, simulation models can be constructed using

three approaches.  The most widely known approach requires an
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analyst to construct an abstract model, to identify the salient

model parameters and values of interest, to select an

experimental methodology and metrics, and then to code the model

in a simulation language. [ZEIG84]  This approach is often used

to assess the performance of communications protocols and to

evaluate various communication network configurations.

For example, Finn, et al., simulated the design of a

hierarchical system of multiple access busses in a real-time

control system. [FINN92]  They wished to estimate, within a

specific probability, the delay of two types of messages, one

with a maximum delay constraint of 1 ms and one with a

constraint of 1 second, under expected loads, given a specific

configuration of nodes connected by busses with a maximum

capacity of 1 Mbps each.  Initially, they performed a

mathematical analysis.  The results of the analysis were suspect

because a number of restrictive assumptions were required to

keep the model tractable.  Next, they constructed a functional

simulation using Pascal.  The Pascal model proved efficient and

flexible, but lacked a graphical user interface and was also

difficult to debug.  Finally, they use a simulation tool, the
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Block-Oriented Network Simulation (BONeS), which proved useful

for determining the details of hierarchical network behavior,

bus interface delays, and acutal maximum queue depths.

Unfortunately, the detailed BONeS model executed very slowly.

The three, different methods described by Finn illustrate some

of the tradeoffs that must be considered when using a simulation

model.

Parr and Bielkowicz, too, resorted to simulation to

evaluate the performance and behavior of a communication system.

In particular, they proposed a new, self-stabilizing, bridge

protocol (to replace the IEEE 802.1D spanning tree algorithm)

for interconnected ethernets. [PARR92]  They also found

analytical models to require unrealistic assumptions.  In

addition, they pointed out that analytical models can only

capture steady-state behavior and, therefore, cannot evaluate a

system’s behavior under transient conditions.  Both Finn and

Parr found analytical models to be a useful tool for verifying

more detailed simulation models.

Because building, verifying, and validating simulation

models require great skills and incur high expense, researchers

are investigating methods to generate simulations from libraries

of generic, domain-specific models. [DEME91, OZDE93, PIDD92,

ZEIG87]  Figure V-10 illustrates the general components of a

system to support model generation.  A number of

general-purpose, data-driven simulators have been developed,

including GPSS, HOCUS, and WITNESS.  Domain-specific,

data-driven simulators include: SIMFACTORY (written in SIMSCRIPT

II.5), MAST (written in FORTRAN), PROPHET, and XCELL+.

Ozdemirel and Mackulak describe an approach that allows

users to construct specific models of manufacturing systems by

selecting and then configuring a pre-built, generic model.

[OZDE93]  In their system, 14 generic model modules were written

using 2500 lines of SIMAN code.  A user interface, composed of
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8000 lines of Turbo Prolog code, acts as an expert adviser for

model selection and enables a user to configure the model.  They

propose their approach based on the belief that the most

difficult skill required of a simulation designer is development

of a conceptual model.  Their approach reduces conceptual model

development to an expert system-assisted search.

DeMeter and Deisenroth propose a framework for construction

of heterogeneous models for simulating multi-stage manufacturing

systems. [DEME91]  Heterogeneous models consist of a mix of

highly detailed models interspersed among a larger set of

generalized models of low detail.  This enables modeling of

specific parts of a system, or design, in enough detail to

assess behavior,

while allowing the

model to also be

observed within a

simulated

environment.  This

approach is

particularly

suitable for

evaluating new

communications

protocols operating

under a simulated,

network load.

In summary,

simulation models

can prove useful for

assessing both the

behavior and performance of distributed, real-time systems.

Properly constructed models, augmented with accurate parameters

and effectively designed experiments, can be used to assess a
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TYPES
  STACK[X]

FUNCTIONS
  empty: STACK[X] -> BOOLEAN
  new: -> STACK[X]
  push: X x STACK[X] -> STACK[X]
  pop: STACK[X] -|-> STACK[X]
  top: STACK[X] -|-> X

PRECONDITIONS
  pre pop (s: STACK[X]) = (not empty(s))
  pre top (s: STACK[X]) = (not empty(s))

AXIOMS
  For all x: X, s: STACK[X]:
  empty(new())
  not empty (push(x, s))
  top (push(x,s)) = x
  pop (push(x,s)) = s

Figure V-11.  Example ADT For A Stack
              [MEYE88, p. 55]



system’s typical performance under steady load, worst-case

performance under peak load, and response to transient

conditions.  Unfortunately, a simulation model is only as

effective as it is accurate.  Model builders need skills in: 1)

conceptual model development, 2) translating from conceptual

model to executable model, 3) analysis for estimating model

parameters, 4) experiment design, and 5) analysis of model

results.  In addition, modelers need an understanding of the

problem domain and specific system to be modeled.  Individuals

possessing such skills can be found only rarely.  Even when such

experts exist, extensive time and effort are involved in

building a simulation, verifying and validating the model,

designing and conducting experiments, and then interpreting the

results.  Time and effort translate into expense.

This completes consideration of formal models and methods

for specifying and analyzing system behavior.  The final three

formal methods discussed, temporal logic, axiomatic methods, and

abstract data types, are structural models.

I. Abstract Data Types

Abstract data types (ADTs) encompass a means and a theory

for specifying mathematically the essential characteristics of a

data type, or class.  An ADT specifies the name of a data type,

the functions available to manipulate the data type, and a set

of axioms that characterize the data type.  Some of the axioms

of an ADT, so-called invariants, describe properties that will

always hold.  Other ADT axioms specify the preconditions that

must hold for a specific function before the result can be

obtained.  ADTs can be specified using first-order, quantified

logic (FOQL) or using an algebraic notation.  Figure V-11 gives

an example ADT for a stack specified using FOQL.  (See section

VI, LOTOS, for an example ADT specified algebraically.) 

The stack ADT in Figure V-11 consists of four sections.

TYPES specifies the name of the ADT, STACK, and indicates
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elements of any type, X, can be placed on the stack.  FUNCTIONS

contains the syntax of the operations provided by STACK; the

syntax includes a function name (shown in italics), any input

parameters, a function arrow (-> denotes a total function and

-|-> denotes a partial function), and any results.  Total

functions will achieve the indicated result under any input

conditions.  Partial functions can achieve the stated result

only under restricted input conditions, so for each partial

function a precondition must be given that specifies the

conditions under which the associated function will achieve the

intended result.  In the example, functions pop and top will not

work when a stack is empty.  The final section of the ADT

contains AXIOMS defining the semantic properties of the ADT.  In

the example, the axioms apply for all elements of type X and for

all stacks of type STACK[X].  For example, when top is called

immediately after element x is pushed onto stack s (push(x,s)),

the element x will always be returned.  Each axiom listed will

always be true for the ADT STACK[X].

ADTs provide a convenient means for specifying formally the

properties of information hiding modules in a software design.

ADT specifications are static and require that a program be

written to generate the specified behavior.  This can present a

problem when simulating designs because the program underlying

an ADT must be implemented in order to present an active

interface.  Wang and Parnas are investigating one possible

method of animating information hiding modules (IHMs) from

module specifications. [WANG93]  They propose specifying an IHM

using trace specifications.  They suspect that, given trace

assertions for a trace specification, the externally observable

behavior of a module can be simulated through trace rewriting

rules.  In effect, they view ADTs as finite state machines that

can accept inputs and simulate responses using a trace rewriting

system.  Should Wang and Parnas achieve acceptable results, IHMs
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could be specified and simulated within a design without having

to implement the underlying, application-specific, code.

In summary, the reader should understand that writing a

formal ADT specification is difficult work.  Once an ADT is

specified, the specification must be animated in some way to

support design simulation.  In addition, ADTs cannot be used to

describe the behavioral or correctness properties of sequential

tasks.  Axiomatic methods provide more aid in specifying tasks.

J. Axiomatic Methods

Sequential programs comprising constructs for choice,

sequence, iteration, assignment statements, and subprogram calls

can be specified as a set of axioms using FOQL.  In general, the

approach requires that a program result be formally specified

and then that a set of programming steps be derived that will

enable the result to be obtained, given a determined

precondition, provided that the program terminates.  At each

step in the program derivation, appropriate statement

preconditions or loop invariants are found.  When a program has

been completed, proof exists that a program, S, will achieve a

known result, R, given a specific precondition, Q.  This

relationship is usually specified as {Q} S {R}.  When {Q} S {R}

holds for every step in a sequential task, the task is said to

be partially correct.  For concurrent programs, safety must also

be ensured.  A safe program will never enter an unacceptable

state such as conflicting access to shared data, deadlock,

critical races, or starvation.

 Two means exist to prove programs correct: 1) operational

proofs and 2) axiomatic proofs. [KARA91]  Operational proofs

entail symbolic execution of a specification and then an

evaluation of the resulting execution tree.  This is similar to

program testing.  Operational proofs are best used when

axiomatic proofs are not possible or not practical.  Axiomatic

proofs use the rules of a system of logic or algebra to
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establish program correctness against a specification.  Recent

research aims at applying these methods to concurrent programs.

 The approach proposed by Dillon requires that each task’s

intended behavior be axiomatically specified as described above.

[DILL90G]  Each task is then executed symbolically to generate  

trees of every possible task state.  From the execution trees, a

set of predicate logic formulae (verification conditions) are

generated.  Any program for which these verification conditions

can be proved is known to be partially correct.

After all tasks are verified, assertions (consisting of

local and global invariants, augmented with auxiliary variables)

are inserted into the tasks and a higher level symbolic

execution tree is generated to evaluate the safety properties of

the concurrent program.  To ensure safety, distributed

termination of all tasks must be shown and absence of rendezvous

failure must be assured.  (Since Dillon’s method applies to Ada

programs, rendezvous failure means that a select statement has

no open alternatives or that an entry call is invoked after a

task has terminated.)

The work reported by Dillon is limited to Ada programs and

addresses only logical correctness and a limited set of safety

properties.  Extensions are needed to incorporate timing

information into the axioms so that the real-time behavior of a

program can be expressed and then proved.  Other researchers are

also investigating this problem.  For example, Ravn, et al.,

propose specifying real-time requirements as formulae in a

duration calculus (also called a real-time interval logic) where

predicates define the duration of states. [RAVN93]  The top

level design of a system describes a control law, that is, a

finite state machine controlling transitions between phases of

an operation.  The work of Ravn, et al., combines finite state

machines, ADTs, represented with Z (see section VI), and

temporal logic.
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K. Temporal Logic

Temporal logic can be used to describe sequences of program

states (much as temporal ordering).  Most temporal logic systems

begin with FOQL and then add a set of temporal operators.  The

most often encountered temporal operators include: 1)

eventually, 2) next, 3) until, and 4) henceforth.  These extend

the ability of logic systems beyond the typical temporal

operators: there exist and for every.  Temporal logic can be

applied to specify and analyze selected properties of concurrent

systems.

Karam and Buhr describe the application of temporal logic

to analyze concurrent Ada programs for deadlock. [KARA91]  They

propose a specification language, COL, supported by a

specification analyzer written in Prolog.  An Ada system,

composed of N concurrent, infinitely-executing tasks, is

specified as an N-tuple of the control and data states for each

task.  The system state changes whenever the state of one task

changes.  Discrete time is modeled, then, as a sequence of

system states.

The COL specification language adds the four, typical,

temporal operators to FOQL, but also provides a built-in library

of predicates specifically for Ada.  To simplify the analysis of

specified programs, several Ada features are excluded: 1)

dynamic task creation and destruction, 2) timed or conditional

task calls, 3) delay or else selective accept alternatives, 4)

exceptions, and 5) dynamic data creation (this eliminates

procedural recursion).  While excluding features (1) and (5)

above seems acceptable, exclusion of the remaining features

might overly restrict the form of Ada programs that can be

specified with COL.  Still, Karam and Buhr report that the
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"...COL language paints a limited, but useful picture of the Ada

language." [KARA91, p. 1124]

Temporal logic does extend the specification and reasoning

power of FOQL so that time ordering can be considered.  Still,

as with temporal ordering, specific timing constraints cannot be

described and reasoned about.  This limitation also holds for

ADTs and for axiomatic methods in general.  In addition, these

methods are difficult to use for specification.  Worse,

reasoning with these methods is sometimes labor-intensive,

always error-prone, and, when automation can be applied,

computationally-intensive, sometimes to the point of

infeasibility.

The formal methods and models covered in section V, often

provide the underlying theory for design and specification

languages.  Languages strive to enhance the underlying

formalisms with some suitable syntax and, usually, with a

run-time environment that can help a designer animate proposed

designs.  In the next section, some design and specification

languages, based on the formal methods and models discussed

above, are considered. 

 

VI.  Languages For Designers

Languages implementing some of the formal models described

in section V can help designers to describe and exercise

specifications and designs.  The following paragraphs discuss

some representative design and specification languages:

Communicating Sequential Processes, Zed, Communicating Shared

Resources, Extended State Transition Language, and Language of

Temporal Ordering Specification.

A. Communicating Sequential Processes

Anthony Hoare proposed a mathematical notation and

semantics for specifying cooperative behavior between sequential

processes that communicate. [HOAR85]  The notation, called
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Communicating Sequential Processes (CSP), combines first-order

logic, set theory, functions, and traces to define a process

logic with synchronization based on synchronous message

exchanges.  (CSP also allows shared data with a limited

semantics.)  Hoare added, to the syntax and semantics, laws for

reasoning about the behavior of processes.  CSP goes quite far

toward defining a theory of distributed, concurrent systems.

Each CSP process is represented as a sequential program (which

can terminate) that operates according to program statements

that can be both deterministic and non-deterministic.  CSP

processes interact via messages.  Hoare shows how CSP can be

used to specify interruptable (with resume) processes, restart

after failure, alternation among behaviors, checkpoints, and

shared resources.  In the main, CSP aims to detect or avoid

deadlock, starvation, and livelock in concurrent systems.

Hoare chose to reject certain features so that CSP could

remain simple and clear.  For example, shared-storage is not
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[producer::
  *[{generate item} -> buffer ! item]
//
buffer::
  [content : (0..n-1) item;
    incount, outcount : integer;
    incount := 0; outcount := 0;

   *[incount < outcount + n; producer ? content
       (incount mod n) -> incount := incount + 1;
    [] outcount < incount; consumer ? request() ->
        consumer ! content (outcount mod n);
        outcount := outcount + 1
    ]
   ]
//
consumer::
  *[buffer ! request(); buffer ? item; {use item}]
]

Figure VI-1.  CSP Program Of A Buffered Producer-Consumer     
              System [HULL86, p. 501]



supported, nor is multi-threading within processes.  These

omissions eliminate such models as conditional critical regions,

monitors, and nested monitors.  Hoare finds that Ada is well

designed (if quite complex) for multiprocessor implementations

using shared data, so he chose to emphasize distributed

processes.  Regarding the controversial area of communication

paradigms, Hoare prefers an RPC model, limiting inter-process

message exchange to synchronous communications.  He considered

and rejected single and multiple, buffered channels,

bi-directional buffered channels, functional multiprocessing,

and unbuffered communications.

A number of researchers started with CSP as a base for a

multiprocessing language.  In each case, CSP could not be used

without change. [HULL86]  The CSP inter-process communications

paradigm proved most troubling.  CSP processes communicate, and

synchronize, with input and output commands.  The general form

is source?variable for input and destination!variable for output.

CSP provides guarded alternative and repetition constructs to

enable multiple, iterative message reception.  A sample CSP

program is shown in Figure VI-1.  

Since all CSP communications is tightly-coupled,

loosely-coupled communications can only be simulated by

introducing an intermediate process (a common occurrence with

Ada), as shown with the buffer process placed between the

producer and consumer processes in Figure VI-1.  In CSP

alternating behavior is denoted by *[...], choice by [..[]..],

parallelism by //, sequence by ;, and guards are followed by ->.

Statements enclosed in {} are comments.  The example in Figure

VI-1 can probably be followed without further explanation. 

Each CSP program is specific to the names of the

destination and source processes that make up the program.  This

proves most unsatisfactory when writing processes that must be

used in a variety of systems.  Another shortcoming of pure CSP
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is the allowance for non-determinism.  Non-determinism in

programs is usually only acceptable when the guards that are

enabled simultaneously have equal priority.  In other cases,

some order of selection must be imposed on the guarded

statements.  A final drawback of CSP is the lack of support for

data types.

Researchers at the University of Adelaide implemented CSP

as COSPOL. [HULL86]  COSPOL adds asynchronous communications to

CSP and includes Pascal data typing.  In addition,

non-determinism is restricted to guarded alternative statements

used for message input.  Another implementation, CSP/80, was the

product of a group of academics in the UK. [HULL86]  CSP/80 adds

the concept of a communications port to CSP; thus, CSP/80

processes are de-coupled from the identity of the processes with

which they communicate.  CSP/80 allows C data types, but with

strong typing.  CSP/80 supports modularity and also allows

output statements within guards (a feature not permitted by

CSP).  CSP/80 does support the full non-determinism of CSP.

Perhaps the most famous implementation of CSP is known as Occam,

a low-level language developed by Inmos, Ltd. for the

Transputer. [HULL86]  One can view Occam as an assembly language

for CSP. Occam, an untyped language, provides basic statements

for sequence, parallelism, choice, and while loops.  All Occam

inter-process communication is via unbuffered, unidirectional

channels.  Occam allows both determinism and non-determinism in

choice statements.  Occam, as with CSP, does not permit output

statements in guards.  Of the three implementations reported

here, Occam aligns most closely with CSP.  The only real

enhancement provided by Occam is the introduction of channels to

de-couple processes from the names of other processes.

Later, Brinch Hansen used CSP and Pascal to form the basis

of a distributed systems programming language he called Joyce.

[HANS87]  Joyce permits processes to exchange messages via
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synchronous, bi-directional channels that may be shared by two

or more processes.  A Joyce rendezvous, however, always involves

exactly two processes.  When more than two processes are ready

to rendezvous on a channel, two are selected arbitrarily.  Joyce

allows processes and channels to be created dynamically.

Processes can also be activated recursively.  Because Joyce uses

Pascal for data typing, messages exchanged between processes can

be of different types, even across the same channel.  This

permits the Joyce compiler to check message types.

Although CSP and the languages that implemented CSP never

achieved a large, practical presence in the marketplace, they

did influence the thinking of designers of later languages.  The

reader will perhaps be able to detect some of these influences

when Estelle and LOTOS are discussed later in this section.
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[Location, Value]

bound : N

readings : Location+→ Value

Sensors

areas : P Location

# areas ≤ bound
dom readings ⊆ areas

Update

∆Sensors
l? : Location
v? : Value

l? ∈ areas

readings = readings ⊕ {l? → v?}

areas = areas

Figure VI-2.  Sample Zed Specification Of A Simple Sensor ADT



B. Zed

Zed is a language for specifying ADTs and systems of ADTs.

[POTT91]  Zed, initially devised at Oxford University’s

Programming Research Group, is based upon first-order logic and

special set theory. [DILL91D]  Zed uses a familiar two-valued

system of logic (as opposed the Vienna Development Method which

uses a three-valued logic).  Zed has been used at IBM to

re-specify the Customer Information Control System (CICS).

Re-specifying CICS in Zed enabled IBM analysts to discover a

number of errors and omissions that had not be detected even

though CICS is a twenty-year-old commercial product.

Zed specifications yield a functional description of what a

system is to do, as opposed to how a system is suppose to

accomplish its objectives.  This declarative approach, sometimes

called operational abstraction, leads to concise, unambiguous,

exact specifications that are easy to reason about.  Zed also

employs representational abstraction by using high-level,

mathematical concepts without worrying about how these concepts

will be implemented.

The main syntactic tool of a Zed specification is known as

the schema.  Each Zed schema contains a schema name, a set of

definitions, and a specification of the post-conditions

associated with any preconditions required by the schema.  In

general, Zed schemas specify one operation in an ADT or system.

Figure VI-2 gives an example of using Zed to specify a simple,

but incomplete, sensor ADT.

The main schema, named Sensors, comprises a partial

function, readings, that maps from a Location to a Value

(Location and Value are defined as sets).  The set areas is

defined as the power set of the set Location.  The variable

bound is a schema constant from the set of positive numbers.

Sensors defines two invariants: 1) the number of areas cannot
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exceed the bound and 2) the domain of readings must be a proper

subset of areas.

The schema Update represents an operation in the Sensor

ADT.  The operation alters the Sensors schema.  Update requires

two inputs: l is a member of the set Location and v is a member

of the set Value.  As a precondition to the Update operation, l,

must be an element of the set areas.  If the precondition is

satisfied, then the function readings will be updated so that

the old value associated with input Location, l, will be

replaced by the new input Value, v.  The areas set will not be

changed.

In summary, Zed provides a rich set of operators combining

first-order logic with special set theory.  The notation is,

perhaps, too rich for easy use.  Zed allows precise and concise

specification of the semantics of a system.  From a Zed

specification additional properties can be reasoned about a
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process Sensor
  local sample
  output data
  timevar t
  every 6 do
    exec(sample);
    scope do idle interrupt send(data) -> skip
    timeout t hard -> skip od
  od

process Conv
  input data
  local compute
  output coord
  loop do
   recv(data);
   scope do exec(compute); send(coord)
   timeout 2 hard -> skip od
  od

Figure VI-3.  Sample CSR Description Of A Sensor And Converter
              [KERB92, p. 772]             



system.  Zed provides no clue as to how a operation is to be

accomplished.

C. Communicating Shared Resources

Gerber and Lee propose a layered approach to specifying and

verifying real-time systems. [GERB92]  Their top layer is an

application language that allows the specification of time-outs,

deadlines, periodic processes, interrupts, and exception

handling.  Their middle layer comprises a configuration language

that can be used to map processes to system resources and to

describe the communications links between processing nodes.  The

application and configuration languages, taken together, compose

a specification language called Communicating Shared Resources

(CSR).  The configuration mapping can be translated into a

process algebra, called calculus of CSR (CCSR).  CCSR defines a

semantics upon which a reachability analyzer is based.  The

objective of the CSR paradigm is to facilitate the specification

of real-time processes and then to enable a static evaluation of

various design alternatives.  Evaluating alternative designs

involves mapping a functional description to various

configuration descriptions and running the reachability analyzer

on each configuration.

The CSR application language comprises declarations and

statements.  Declarations include ports for sending output

messages and receiving input messages, events for executing

local operations, and timing parameters that are used in certain

types of statements.  CSR application language statements

include send and receive, time-outs, periodic loops, interrupts,

exception handling, and sequential composition.  The emphasis is

on describing inter-task operations.  Discussing a small example

should prove instructive.

Figure VI-3 shows a brief specification of a sensor and

converter in the CSR application language.  The CSR keywords are

rendered in boldface type.  The process Sensor contains three
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declarations: a local operation (sample), an output channel

(data), and a free time variable (t) that can be set from a

configuration description.  Sensor wakes every six seconds,

executes sample and then attempts to output on data.  If the

output is not accepted within time t, then Sensor simply stops

trying.  The process Conv loops forever.  First, Conv waits for

input on data.  Once input arrives, the local operation compute

is performed and then an attempt is made to send a message on

coord.  If the message is not accepted in 2 time units, then

Conv simply returns to the top of its loop.

CSR provides for three forms of concurrency.  Processes can

execute concurrently on the same resource and on different

resources (i.e., be modeled as a distributed system).  The third

form of concurrency, intra-process concurrency, can be modeled

by the analyst using the interleave statement.

The CSR configuration language enables an analyst to

declare system resources (resource), to bind priority and time

values to processes (process), to map processes to resources

(assign), to create channels by connecting ports (connect), and

to define limits to resources (close).  The configuration

language allows hierarchical schemas for added convenience.

The calculus of CSR defines an underlying semantics using

set theory and two sets of inference rules: 1) an unconstrained

transition system and 2) a transition system to model preemption

and priority.  A translator can map the CSR processes into CCSR

terms.  At first, Gerber and Lee planned to implement the

semantic model as a rule rewriting system but using the

"...rewrite rules stretches the range of both endurance and

patience." [GERB92, p. 781].  They decided to try reachability

analysis instead.  A CSR specification, after translation into

CCSR, is guaranteed to produce a finite reachability graph.

Once the system’s state-space is generated, real-time errors can

be found directly.
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A CSR application lacks the abstraction usually found in a

requirements specification but a program can be easily produced

from a CSR description.  CSR seems to be more appropriate as a

design tool that as a specification aid.  In fact, a underlying

model can probably be developed to simulate a CSR application

and configuration.  CSR seems to hold some promise as a tool for

designing and evaluating distributed, real-time systems.

D. Extended State Transition Language (Estelle)

Estelle is a language for describing formally the

properties of communications protocols and other distributed

systems.  Estelle developed from efforts to specify protocols

for Open Systems Interconnection (OSI). [DIAZ89, ISO92]  Estelle

extends the syntax and semantics for the international standard

for Pascal.  The model underlying these Pascal extensions is a

system of hierarchically-structured, communicating finite state

machines (FSMs).  Estelle FSMs, encapsulated as modules, may be

active or passive.  Active FSMs can run in parallel,

communicating by exchanging messages.  (Sharing of variables is

supported between parent and child modules.)
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Figue VI-4.  Example Estelle Specification Architecture
             [CHAM92, p. 6]



Interfaces between Estelle modules consist of three

components.  Interaction points, which can be external to peer

modules or internal for parent-child modules, define the input

and output points at which modules can communicate.  Interaction

points are unbounded, FIFO queues that can be point-to-point or

shared (known as common queues in Estelle).  Interactions

comprise the messages that can be exchanged through an

interaction point.  All send operations in Estelle are

non-blocking.  Channels consist of two sets of interactions (in

and out).

An Estelle specification comprises a hierarchy of module

descriptions.  Outer modules, each representing one physical

node, can either of two types: systemprocess or systemactivity.

Each systemprocess module can initiate subordinate active

modules (process or activity) and each systemactivity module can

initiate subordinate activity modules.  A systemprocess permits

multiple transitions to fire in subordinate modules during each

firing cycle.  A systemactivity allows only one enabled

transition to fire during a firing cycle; when multiple

transitions are enabled, one is selected non-deterministically

for firing.  Perhaps an example will help cut through the

thicket of Estelle jargon.

Figure VI-4 shows an example of the architecture of an

Estelle specification, SP.  The specification consists of two

systems, or nodes, S1 and S2.  S1 and S2 each offer a single,

external interaction point, ip x and ip y, respectively.  These

interaction points have been connected in the parent module, SP.

System S1 consists of a single process, module A, that has

another module, B, nested within it.  Module B has an internal

interaction point, ip b, that is attached to module A’s

interaction point, ip a, which is in turn attached to system

S1’s ip x.  This connection graph implies that module B can

exchange interactions with other nodes, in this case node S2.
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System S2 consists of two processes, modules C and D. Only

module C can exchange interactions with other systems.  Modules

C and D are connected through two pairs of interaction points

(ip c2-ip d1 and ip c3-ip d2).  Each participant at an

interaction point must be assigned a named role that limits the

allowable message types that the participant can send and

receive.  An Estelle channel is an interaction point with a

named role and a designation of whether the queue is

point-to-point or common.

The internal behavior of each active, Estelle module is

specified using FSMs, extended with state-history variables and

predicates that can guard transitions.  Each transition

represents an atomic set of actions.  A delay construct is also

included to represent the passage of time.

The syntax of Estelle modules, adapted from Pascal,

includes a header and a body.  For a given header, multiple

bodies can be defined so that different implementations of the

same interface can be instantiated.  A module body consists of

three parts: declarations, initializations, and transitions.

Declarations comprise channels, nested modules, module

variables, states and sets of states, and internal interaction

points to children.  The initialization portion defines the

starting state, assigns variable values, starts any child

modules, and connects and attaches interaction points.  In

Estelle, alternative initializations can be specified.  The

transition section describes the FSM that controls a module’s

behavior.  The form of a transition is: transition from <state>

to <state> [when <predicate> | provided <predicate>] [delay

<time>].  Estelle modules can also use Pascal statements, along

with some additional statements added for Estelle operations.

Estelle-specific statements allow modules to be controlled

(init, release, and terminate), enable interaction points to be

managed (connect, disconnect, attach, detach), send interactions
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(output), and add some convenient operators (all, forone, and
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specification EXAMPLE;
 
  default individual queue;
  timescale second;

channel UCH(User, Provider);
   by Provider: DATA_INDICATION;

channel NCH(User, Provider);
   by User: DATA_INDICATION;
   by Provider: SEND_ACK(x : integer);

module USER systemactivity;
  ip U: UCH(User);
end;

body USER_BODY for USER; external;

module RECEIVER systemactivity;
    ip U: UCN(Provider); N:NCH(Provider);
end;
 
body RECEIVER_BODY for RECEIVER; external; (*see Figure VI-6 *)

module NETWORK systemactivity;
  ip N: NCH(User);
end;

body NETWORK_BODY for NETWORK; external;

modvar X: USER; Y: RECEIVER; Z: NETWORK;

intialize
  begin
    init X with USER_BODY;
    init Y with RECEIVER_BODY;
    init Z with NETWORK_BODY;
    connect X.U to Y.U;
    connect Y.N to Z.N;

Figure VI-5. Example Estelle Specification -- Part I
[ISO92, p. D.35]
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body RECEIVER_BODY for RECEIVER;
  (* declarations *)
    type time_period = integer;
    const high = 0;
          medium = 1;
          low = 2;
    state IDLE, AK_SENT;
    var   ak_no : 0..7;
          min, max, inactive_period : time_period;
  (* initializations *)
    intialize
      to IDLE
        begin
          min := 1; max := 20; inactive_period := 60;
          ack_no := 0;
        end;
  (* transitions *)
    trans
      from IDLE
         to IDLE
            priority medium
              when N.DATA_INDICATION
                name t1:  begin
                             output U.DATA_INDICATION;
                             ak_no := ak_no + 1;
                          end;
         to AK_SENT
            provied (ak_no > 0) and (ak_no <= 4)
             priority low
                delay(min, max)
                  name t2:   begin
                              output N.SEND_AK(ak_no)
                             end;
             provied (ak_no > 4) and ak_no < 7)
              priority high
                 delay(min)
                   name t3:   begin
                               output N.SEND_AK(ak_no)
                              end;

   (* CONTINUED ON NEXT PAGE *)

Figure VI-6. Estelle Specification Of RECEIVER_BODY
[ISO92, p. D.40-D.41]



exist).  An example will illustrate Estelle syntax.

Figure VI-5 gives part of an Estelle specification for a

one-way receiver that acknowledges messages that are received.

This specification, named EXAMPLE, defines two channels, UCH and

NCH.  Each channel allows two roles, a User and a Provider.  On

channel UCH, the Provider can send a DATA_INDICATION

interaction, the User sends nothing (remember, the example is

receive-only).  On channel NCH, the User can send a

DATA_INDICATION interaction, while the Provider can send a

SEND_AK interaction containing a single integer. The

specification also declares three nodes, USER, RECEIVER, and

NETWORK.  For each node, a channel is indicated and a role is

defined.  The RECEIVER is a Provider on channels UCH and NCH.

The NETWORK is a User on channel NCH and the USER is a User on
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(* CONTINUED FROM PREVIOUS PAGE *)

                provied ak_no =7
             priority high
                  name t4:   begin
                                output N.SEND_AK(ak_no)
                             end;
             provied otherwise;
              priority low
                 delay(inactive_period)
                   name t5:   begin
                               output N.SEND_AK(ak_no)
                              end;

     from AK_SENT
         to IDLE
              name t6:  begin
                           ak_no := 0;
                          end;

end;

Figure VI-6. Estelle Specification Of RECEIVER_BODY - Cont.
[ISO92, p. D.40-D.41]



channel UCH.  Only the headers are given for each module; the

bodies are specified elsewhere.

The specification, EXAMPLE, also declares three module

variables, X, Y, and Z, of type USER, RECEIVER, and NETWORK,

respectively.  Then the three modules are instantiated with the

indicated module bodies.  Finally, the instantiated RECEIVER

module is connected to the instantiated USER and NETWORK

modules.

Figure VI-6 gives the Estelle specification of the

RECEIVER_BODY declared in Figure VI-5.  This shows how Estelle

allows description of module behavior with an extended FSM.  The

module contains a type, some constants, and a few variables.

Two states are declared: IDLE and AK_SENT.  The initialization

section should be self-explanatory, except that the time period

for the delay for transition t5 begins ticking immediately

because that transition is initially enabled (because transition

t5 is enabled whenever the FSM is in the IDLE state). 

The transition section is organized by state.  When an

DATA_INDICATION interaction arrives on channel N, transition t1

is triggered, causing a DATA_INDICATION to be sent on channel U

and also incrementing ak_no.  The transition does not change the

explicit state of the FSM.  Whenever the ak_no is greater than

zero, additional transitions are enabled, but may be delayed.

For example, transition t2 is enabled after the first

DATA_INDICATION and stays enabled until the fifth

DATA_INDICATION (when t2 is disabled) or until the delay

interval expires (in which case t2 is fired).  This FSM allows

for up to eight messages to be received before an acknowledgment

is sent, but will acknowledge a fewer number of messages when a

certain period of time passes without eight messages being

received.  If no messages arrive in the inactive period, then an

acknowledgment is sent (with an ack_no of zero) and the FSM

spontaneously moves from the state AK_SENT to IDLE.
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Estelle is supported by a number of tools, such as

translators, run-time environments, graphical simulators, and

syntax-directed editors. [DIAZ89]  Estelle has been used to

specify a range of communications protocols, including the

international standard for distributed transaction processing.

Although Estelle appears to offer reasonable means for

specifying communications protocols, a number of enhancements

have been proposed to increase Estelle’s potential as a

distributed systems design language.

FIFO queues are the only method currently allowed by

Estelle for inter-module communication.  Sijelmassi recommend

adding a rendezvous to Estelle so that processes on the same

node can interact via shared variables. [SIJE92]  Sijelmassi

also proposes named queues, exception handling, composition of

input conditions, and more advanced queue operations.

Chamberlain proposes four Estelle enhancements intended to

extend its scope of application to general, distributed systems.

[CHAM91, CHAM92] He cites the need for broadcast communications,

n-way synchronization, a single-state history mechanism (for

exception handling), and a strict, real-time constraint

mechanism (to allow specification that an action must occur by a

given time).

In summary, Estelle extends Pascal with constructs for

defining hiearchically-structured, communicating FSMs.  Estelle

specifications are operational in nature; so a program

implementing an Estelle specification is easy to build; and, in

fact, several Estelle-to-C and Estelle-to-C++ translators exist.

Enhancements to Estelle might make the language more suitable

for specifying distributed systems.

E. Language Of Temporal Ordering Specification (LOTOS)

LOTOS merges two concepts (described in section V):

temporal ordering and abstract data types. [ISO87, MUN91]

Temporal ordering, based on a modification of the calculus of
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communicating systems (CCS), is used to describe process

behaviors and interactions.  Abstract data types, as defined by

the ACT-ONE language, are used to specify data structures and

their operations.  These two parts of LOTOS are independent and,

in theory, a language other than ACT-ONE (Zed, for example),

could be used to describe ADTs in LOTOS. Some researchers point

out, however, that replacing ACT-ONE would require extensive

modifications to the CCS portion of LOTOS. [LOGR88]

A LOTOS behavioral system consists of nested processes that

interact via a multi-way rendezvous, where processes may

withdraw before a rendezvous occurs.  Message-passing protocols

have been defined to allow the LOTOS rendezvous mechanism to be

implemented between distributed processes. [SIST91]  Because

LOTOS formed the basis for explaining temporal ordering in

section V, the discussion presented here will concentrate on the

ADT portion of LOTOS and then on LOTOS tools and on the

application of the language.

ACT-ONE provides an algebra for specifying LOTOS data

types.  [MUN91]  Because ACT-ONE uses an algebraic notation to
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type Bitstring is
   sorts Bit, BitString
   opns
        0, 1: -> Bit
        String : Bit -> BitString
        Append : BitString, Bit -> BitString
        Prefix : Bit, BitString -> BitString
        Concatenate : BitString, BitString -> BitString
   eqns
        forall x, y: Bit, s, t: BitString
          ofsort BitString
             Prefix(y, String(x)) = Append(String(y), x);
             Prefix(y, Append(s, x)) = Append(Prefix(y, s), x);
             Concatenate(t, String(x)) = Append(t, x);
             Concatenate(t, Append(s, x)) =
                     Append(Concatenate(t, s), x);
endtype

Figure V-7.  Example LOTOS Type Defined Using ACT-ONE
[MUNI, p.16]



describe ADTs, some terminology is different than described

earlier for ADTs specified with FOQL.  For example, LOTOS data

types are called sorts and operations on data types are called

relationships.  All LOTOS operations are total functions.  When

a function has only two arguments, LOTOS permits either prefix

or infix notation.  In general, one builds a package containing

several sorts, and uses these sorts as argument and result types

in operations.  Such a package of sorts and operations is called

a type in LOTOS.  A LOTOS type also includes equations that

define invariant relations among the sorts and operations in the

type.  Perhaps this can best be explained using an example.

Figure V-7 gives a LOTOS description of a Bitstring type.

BitString uses two sorts, Bit and BitString.  Six operations are

also defined. The operations 0 and 1 each return a Bit.  The

operation String casts an argument of Bit into a result of

BitString.  Prefix adds a Bit to the front of a BitString and

Append adds a Bit to the end of a BitString.  Concatenate joins

two BitStrings to form a BitString.  Four equations give the

axioms of the operations.  This definition should be familiar to

the reader from the earlier description given of ADTs (refer to

section V).

LOTOS types may be built from other types by using an

import mechanism.  Parameterized (i.e., generic) types can also

by defined.  LOTOS includes a pre-defined library of data types,

for example, Boolean, NaturalNumber, NonEmptyString, Bit, and

Octet.  LOTOS ADTs suffer from several problems.  For one, LOTOS

does not support partial functions; thus, lacks arbitrary

preconditions for operations and lacks the ability to constrain

a sort to define subsorts.  LOTOS also does not support the use

of unspecified (i.e., generic) data algebras, so a specific

algebra cannot be substituted into a larger specification.

Some tools have been implemented to support the LOTOS

language.  In section V, for example, a tool for translating
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LOTOS processes into C functions was described.  A LOTOS

interpreter, implemented in YACC/LEX, C, and Prolog, also

exists. [LOGR88]  The interpreter enables an analyst to: 1)

recognize whether a given sequence of interactions is allowed by

a specific LOTOS specification, 2) generate randomly chosen

sequences of interactions from a LOTOS specification, 3)

generate sequences from a specification under user guidance, and

4) simulate a specification, step-by-step.  LOTOS specifications

cannot be translated easily into efficiently executing programs.

LOTOS allows infinite recursion, permits non-determinism, and

enables the definition of unbounded axioms in ADTs.   To use the

interpreter at all, a specification must be carefully

constructed.  Interpreted LOTOS specifications cannot be used in

lieu of a hand-coded implementation, yet LOTOS specifications
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cannot be readily converted into hand-coded implementations

because temporal ordering is used (see section V).

LOTOS has been applied.  Several OSI protocol

specifications are written in LOTOS.  Other applications of

LOTOS include specifications for computer-integrated

manufacturing architecture [BIEM86] and communication security.

[MUN91]  More applications of LOTOS can be expected to occur.

VII.  Design Environments

The preceding sections of this paper discussed the nature

of software design, identified some key problems facing

designers, and described a variety of formal models and methods

proposed to help designers.  In this section, the foregoing

discussions are integrated.  First, an idealized design

environment is proposed.  Then, design environments investigated

by four research groups are described and evaluated.

A. An Idealized Design Environment For Real-Time Systems

An idealized design environment (IDE), illustrated in

Figure VII-1, must support three activities: specification,

design, and test.  For specification, the IDE should help the

designer to find, evaluate, and correct any omissions,

ambiguities, and inconsistencies in the informal requirements.

In addition, the IDE must offer help with the specification of

timing constraints.  Three tools are needed to help accomplish

these objectives.

A specification language gives the designer a model for

representing formally a system’s functional and timing

requirements.  The language should be convenient to use, should

be a medium for communication between the designer and the

requirements analyst (and, if possible, between the analyst and

the user), and should be based on a formal model that is

amenable to analysis.  Although multiple forms of analysis might
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be required, a single specification language should suffice if

at all possible.  Multiple translations of the specification

should be avoided, even when provided with automated

translators, because errors can creep in among the various

representations.

The IDE should offer specification analyzers that can

identify and evaluate requirements errors.  The exact nature of

such analyzers is an open area for research.

A specification library should be included in the IDE to

support reuse of formal specifications.  Such a library might

also be used to record historical data on specification errors

as they are encountered and resolved.

For design, three categories of tools are needed.

Generation tools can help a designer produce a concurrent design

from a formal requirements specification;  analysis tools enable

a designer to assess the correctness of a proposed design;  

simulation tools allow a designer to exercise a proposed design

under varying loads and in alternative configurations.  Each

category of tools is considered further below.

The key to design generation is a design modeling language

(DML) and the underlying model and representation that support

the language.

[T]he most important component [in making real-time
systems easier to understand] is the development of
the underlying models used to represent the systems.
Such a model should ideally possess formal semantics
that allow a system’s correctness to be verified.  At
the same time, it should represent the software and
real-world entities in a way that feels natural to
system designers. [BIHA92, p. 26]

The DML and underlying model should be consistent with the

design method used.  This will enable the designer to think and

act in familiar terms.  The representation underlying the

language and model must support efficient analysis and
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simulation without requiring additional translation (unless such

translation is automatic).  

A design generator should provide automated assistance to

convert a formal specification into a concurrent, and possibly

distributed, design.  A design generator should apply the rules

of a design method when generating the design. The generator

should consult with the designer for guidance as the design is

created.  The resultant design should show the structure of the

software, as distribution units, tasks, and information hiding

modules, and should generate a skeleton for task behaviors and

module definitions.  A design editor should enable the designer

to modify the design and to add the details needed to complete

the generated skeletons.  An editor should also allow a designer

to enter a design without assistance from the generator. 

A design library can support the generation of task and

module skeletons.  A library, coupled with a search program and

the design editor, might also support the reuse of previous

designs.

Once a design exists, analysis is needed.  If possible,

automated correctness analyzers should be employed.  Approachs

to design verification are the subject of much current research.

Some approaches rely an exercising the design; others attempt to

mathematically evaluate the design.  Exercising a design, much

as testing, can detect errors, but cannot guarantee the absence

of errors.  On the other hand, analyzing complex designs for

real-time systems can be mathematically difficult, labor

intensive, error prone or computationally infeasible.  For

analysis, a design must usually be translated into a formal

model that reduces complexity.  The translation process can

alter the design so that the resulting analysis might not apply

to the actual system design.

Schedulability analyzers using rate monotonic analysis can

be applied to concurrent designs.  The designer must, however,
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supply accurate information to generate reliable results.

Having a schedulability analyzer available can allow the design

to be assessed iteratively as more detailed information becomes

available.  Schedulability analyzers should also enable the

designer to specify event threads for which response time

estimations are needed.

While analysis can help the designer evaluate the

correctness and schedulability of proposed designs, simulation

allows a design to be exercised under load, and in a range of

configurations.  To support simulation, the IDE should contain a

design configuration language (DCL), a design configurator, and

a simulator.  The DCL lets the designer allocate distribution

units to nodes, specify the performance characteristics of the

nodes and of the communications links between them, and to

constrain any system resources.  The design configurator

analyzes DCL files and the design model and then generates a

design simulation model.  The simulator exercises interactively

the configured model.  Interactive execution enables a designer

to investigate the run-time behavior of a proposed design.  The

simulator should detect correctness violations, record

performance characteristics, and monitor resource usage.  The

designer should be given complete freedom to alter a

configuration while the simulation is running, as well as to

halt the simulation and examine the state of the system.

All analysis and simulation should operate from the design,

as specified by the DML and underlying model.  A designer should

not be required to produce different models of the design for

each purpose.  Researchers are currently investigating

approaches to accomplish these objectives. 

The final activity that an IDE should support is testing.

An IDE should allow automation-assisted test generation from a

formal requirements specification.  Three types of tests should

be generated: functional, performance, and system.  Proper test
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generation can enable an intelligent and cost effective testing

campaign.  The generated tests can be used by software test

teams to support integration and system testing.  In addition,

since the tests can be made available during software design,

the tests can guide the designers analysis and simulation of

design alternatives.  Methods for generating appropriate

software tests are currently the subject of much research. 

Beyond the specifics covered so far, a few desirable

qualities for an IDE can be mentioned.  The languages available

in an IDE (i.e., the specification language, DML, and DCL)

should be familiar and comfortable to the designer.  If

possible, these languages should support existing design

methods, rather than force the designer to learn complex, new

approaches.  A balance is required between two extremes.  On one

hand, since current design methods appear to lack rigor and

formal semantics, the ability of an IDE to generate, analyze,
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and simulate designs might prove too limited.  On the other

hand, introducing a high degree of rigor and formality will

likely require new design methods.  Such new methods might prove

time-consuming to learn, difficult to apply, and limited in

scope.  A successful approach might start from existing design

methods and add, unobtrusively, the rigor and formality needed

to support design generation, analysis, and simulation.

The tools in an IDE should be easy for a designer to use.

If these tools are not easy to use, then they will not be used.

(Of course, ease of use can be traded to some degree for

improvements in effectiveness.)  IDE tools should also be

efficient.  IDEs should provide, almost as a side effect,

traceability from informal requirements, to formal requirements,

to tests, and to the design.

The idealized IDE, then, must achieve some difficult

objectives.  The reader probably understands that no such IDE

exists.  Researchers have, however, investigated design

environments for a number of years.  Below, four proposed design

environments are described and evaluated.

B. System ARchitects Apprentice (SARA)

The System ARchitects Apprentice, SARA, a join developement

of researchers at UCLA and the University of Wisconsin, provides

an interactive environment for modeling, analyzing, and

simulating designs for concurrent systems. [ESTR86]  SARA’s

goals are six: 1) to allow reasoned consideration of hardware

and software tradeoffs, 2) to support building models of a

system’s operating environment, 3) to separate structure from

behavior, 4) to enable early detection of design flaws, 5) to

facilitate composition, implementation, and testing of designs,

and 6) to assist individual designers in a manner most

comfortable to them.
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The SARA environment comprises two categories of tools, as

illustrated in Figure VII-2.  The main SARA tools allow

designers to model structure and, separately, behavior.  Using

the Structure Langauge (SL) designers can specify a fully

nested, hierarchical structure of modules and module

interconnections (via sockets).  The Module Interface

Description (MID) tool provides access, via program code,to

named, design resources.  Ada, for example, can be a

satisfactory MID language.

Using the behavior tools designers can specify, analyze,

and simulate a design.  The underlying behavioral model is based

on the UCLA Graph Model of behavior (GMB).5  SARA uses a formal

GMB to model control and data flows, and the interpretation of

data types.  To model control, designs are specified with nodes

and control arcs in a manner similar to Petri nets.  The data

domain is modeled using processors (i.e., transforms), data sets

(i.e., data stores), and data arcs (i.e., data flows).  SARA’s

data domain model represents data flow diagrams.  In the

interpretation  domain, SARA can model the data types of data

sets and of algorithms in node-processor pairs.  In essence, the

interpretation model is similar to a data dictionary and

associated mini-specifications.

Once a behavioral and structural model are specified for a

design, SARA allows the designer to investigate a range of

issues.  For example, the behavioral model can be merged with an

environmental model, after which simulation experiments can be

conducted.  The SARA simulator is interactive and includes a

range of nice features, plus built-in checking for specific

design flaws.  Or, the control and data graphs can be analyzed

to detect contention for resources.  The designer might also

blend in the interpretation model to attempt validation of the

5 The UCLA Graph Model of behavior was not covered in section
V.  Suffice to say that the GMB, with appropriate restrictions,
is equivalent to a Petri net model. [ESTR86, p.294]
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entire design.  Consider further some of the dynamic modeling

capabilities of SARA.

The GMB model enables the designer to represent explicitly

 contention for active and passive resources.  Once encoded in a

design, the contention is modeled in SARA analyses for

correctness and for performance.  To assess correctness, a

control flow analyzer builds a reachability graph.  Since these

graphs can grow quite large (or even be infinite), a strong

reduction algorithm is used to reduce the state space without

sacrificing too much analysis.  The reduction algorithm compacts

sequential paths and paths guaranteed never to deadlock.

To assess performance, the GMB simulator derives stochastic

queuing models from the design specification.  Using the queuing

model, SARA can estimate, for each modeled resource, the

following average values (within a known confidence interval):

utilization, queue size, and waiting time.  SARA can also

determine distributions for queue size and waiting time.

The diverse tool set provided by SARA is presented through

a coherent, single user interface.  Unfortunately, the syntax of

the various languages appear difficult to master.  Another

shortcoming of SARA is the large, cumbersome, and complex nature

of the software.  A designer must carefully consider the goals

of a particular study and build models appropriately because

SARA supports a range of evaluation methods.  SARA could benefit

from inclusion of a expert system to guide designers through the

SARA design process.  A graphical interface could also make SARA

more approachable.  As with many tools described in the

literature, SARA needs improved means to model time-constrained

systems and to avoid the combinatoric explosion problem faced

when analyzing realistic designs.

C. Methodology for Integrated Design And Simulation (MIDAS)

Bagrodia and Shen describe a design methodology for

integrated design and simulation (MIDAS) that differs sharply
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from SARA. MIDAS "...supports the design of distributed systems

via iterative refinement of hybrid models". [BAGR91, p. 1042]  A

hybrid model is a partially implemented design; some components

comprise simulation models, others consist of operational code.

The main purpose of MIDAS is to assess the average performance

traits of a design.  MIDAS increases modeling realism by

representing interrupts and distributed design components.

MIDAS development begins with construction of a

discrete-event simulation model that the designer transforms

over time to an operational system.  Design components are

modeled using a concept called partially implemented performance

specifications (PIPS).  PIPS are implemented using an existing

simulation language, such as MAY or Maisie, but with extensions

to allow interface to components coded in a high-level

programming language.  Much attention is given to interleaving

simluated and live execution so that interrupts can be properly

modeled, especially since MIDAS supports distributed execution

of models.

Some shortcomings to MIDAS are readily apparent.  No

support is provided for analysis of correctness.  The

performance modeling available with MIDAS can only predict

average behavior.  In fact, because MIDAS allows hybird

modeling, the simulation hardware must be identical to, or

scalable to, the hardware on which the real system will execute,

if an accurate performance prediction is needed.  MIDAS requires

extension to allow modeling of hard, real-time systems.

D. PROTOB

PROTOB aims to facilitate executable specifications for

large-scale, event-driven systems. [BALD91]  The intent of

PROTOB is twofold: 1) to enable behavioral prototyping and

performance evaluation of a software specification and 2) to

support automated translation of a specification into an

architecture design.  To accomplish these objectives, PROTOB
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provides tools for modeling, application generation, and

emulation.

PROTOB includes two specification languages, one graphic,

one textual, that describe formally object behavior.  The

specification languages are based on a form of high-level Petri

nets, called PROTnets, integrated with extended data flows and

high-level programming languages.  A PROTOB specification

embodies an executable, object model, where each object

encapsulates a PROTnet.  PROTOB objects can be constructed,

hierarchically, from other PROTOB objects, and can communicate

with each other via message passing.

Application generation tools, part of a complete CASE

environment supporting PROTOB, translate PROTOB specifications

into an executable program, either centralized or distributed,

implemented in C or Ada.  PROTOB specifications can be

translated into a simulator or an emulator.  The simulator

version can exercise the system while including the modeling of

time.  The emulator version is a prototype that must be

integrated with an actual environment.  Simulations are used to

evaluate the performance of a specification, while emulations

are used to evaluate control behavior.  Both types of dynamic

model can be generated from the same PROTOB specification, and

both are executed by an underlying inference engine, tailored

especially for PROTnets.  To see how this might be achieved,

consider the details of a PROTOB object specification.

Each PROTOB object is defined with a script;  a script is

simply a text file with definitions of token types, local

variables, and actions associated with each PROTnet transition.

The variables and actions are written in C or Ada, depending on

the target language of the application.  Each script, in detail

contains:

token types, structured messages (like Ada records);

communication types, used to connect objects;
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object parameters, which must be scalar values;

local variables, which can be initialized;

declaration of external functions (in the target language);

transition defintions, with optional

predicates and actions (in the

target language) and optional

priority;

optional initialization actions; and

optional final actions.

PROTnet transitions are responsible for

introducing timing constraints into the

model.  Each transition can include,

optionally, delayed release and delayed

firing parameters.

PROTOB appears to provide a useful

design environment for distributed, real-time systems.  A number

of successful applications of PROTOB are reported, e.g.,

manufacturing systems, monitoring systems, and communications

protocol design, with complexity ranging from 10 to 70 different

objects with up to 50 transitions each. [BALD91, pp. 829-830]

The emphasis of PROTOB is on specifying and exercising a

system, not on analysis.  Thus, as with other such approaches,

errors can be detected, but the absence of errors cannot be

shown.

E. Mars

Mars, a product of researchers at the Technical University

of Vienna, encompasses a prototype development support

environment for maintainable, real-time systems. [POSP92]  The

aim of Mars is to facilitate construction of hard-real-time

systems that are understandable and maintainable, as well as

correct and timely.  Mars supports the approach of pre-run-time

scheduling.  An off-line scheduler produces, if feasible, a task

schedule and allocates messages to bus slots (Mars supports
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design of

mulitprocessor

systems connected by

a high-speed bus) in

a manner that meets

all synchronization,

timing, and

communication

constraints.  In a

very controlling

fashion, the Vienna

researchers attempt

to eliminate every

source of

uncertainty so that

Mars designs are

deterministic and

completely under a

designer’s control.  They even, for example, avoid the problems

posed by instruction caching and pipelining in modern,

high-performance microprocessors.  They avoid this by refusing

to use them - every target processor in their system is a fixed

instruction Motorola 68000.  Each board in the network consists

of two processors: one for applications and one for low-level

direct-memory access in support of bus communications

processing.  Every operation in the network happens

synchronously.  The only system interrupt is a clock tick to

mark the boundary of CPU and bus slots.  Although a message

passing paradigm is used for inter-processor communications,

each message gets a dedicated time slot on the bus and each task

gets a cyclic execution slot on its local processor.  All of

this is predetermined by the off-line scheduler.  This
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background is important to understand before the software design

approach and environment are discussed.

Every task in a Mars design is specified in a real-time

language, Modula R, derived from Modula 2.  The skeleton of each

task consists of a wrapper logic that is identical for every

task in a Mars design.  The task skeleton is shown in Figure

VII-3.  Each task loops forever performing four actions: wait

for the start signal (i.e., the task’s schedule slot to arrive),

read all input messages, perform application specific

operations, and write any output messages.  The application

specific operations are describe in Modula R.  Modula R

restricts Modula 2 by eliminating GO TO, abolishing recursion,

and banning dynamic memory allocation from the heap.  All of

these operations would introduce uncertainty into a task’s

timing characteristics.  Modula R also adds some primitives to

Modula 2.  The additions, scopes, markers, and loop sequences,

let a programmmer express knowledge about infeasible paths.

Adding this meta-knowledge, unknown to all but the programmer,

can tell Mars that a program will leave a control structure

within a finite bounds.  The Mars compiler system can analyze

program code (when augmented appropriately with markers, loop

sequences and scopes) to determine a task’s timing behavior.  

After a program is analyzed, the source code is displayed

in an editor with each control construct annotated with an

estimated program execution time.  The total execution time for

the task is computed from the sum of the calculated time,

coupled with the system’s understanding of time for repetitive,

overhead operations (e.g., context switching and message

passing).  Through a novel concept, called time editing, the

programmer can suggest different hypothetical maximum times

where she thinks that the time can be improved through code

tuning or by choosing, ultimately, a more efficient algorithm.
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Once the programmer has overridden the analyzer’s estimates, the

programmer’s figures will be used in all further calculations.

A general layout of the Mars development environment is

shown in Figure VII-4.  Mars supports either top-down or

bottom-up design as appropriate to the problem and to the

designer’s wishes. Mars allows designers to incorporate

execution timing considerations into the design from the start.

(Of course, these are timing budgets assigned to program

elements, not time constraints entered from a requirements

specification.)  After a timing data base exists for the tasks

in the design, an off-line scheduler can allocate tasks to

processors, can arrange synchronized access to resources, and

can budget bus bandwidth for inter-node message communications.

As the reader can see, a variety of approaches exist to

supporting real-time system designers with automation.  Each

approach as described above has strengths and weaknesses, and

each fails to achieve all the characteristics of the IDE

detailed at the beginning of the section.  Although some of

these environments offer useful aids, none has achieved

successful application in the design of large, commercial,

real-time systems.

VIII.  Conclusions

This paper described the purpose of design as threefold: 1)

to discover the structure of a problem, 2) to create outlines,

or architectures, of a solution, and 3) to evaluate the

solutions against the problem.  For designers of software

systems, these goals can be translated into some specific steps.

First, informal software requirements specifications must be

reviewed and analyzed using some systematic method.  Second, the

set of software components, and relationships between them,

necessary to meet the requirements must be described in enough
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detail to permit accurate evaluation and implementation.  The

third purpose of design, evaluation, is often handled poorly for

software systems.  Typically, software designs are evaluated

only during system testing.

For designers of real-time, software systems, functional

requirements are augmented by timing constraints.  Such

real-time constraints must be satisfied for a software system to

be considered correct.  The timing constraints generally fall

into two classes: response-time for specific events and system

throughput in the face of a peak load.

When a real-time, software system is also distributed

several additional concerns arise.  Processes and data must be

allocated among nodes in the system.  An inter-node message

passing paradigm must be defined.  A means must be devised to

integrate the inter-node and intra-node message passing models.

The physical characteristics of inter-node communications paths

must be accounted for.  Incompatible data representations must

be reconciled.  System security issues must be identified and

resolved.

The problems recounted above reveal a number of challenges

for researchers who seek to improve the lot of software

designers, particularly designers of distributed, real-time

software.  Designers need methods to detect and resolve flaws

contained in software requirements specifications.  Designers

and specifiers need improved mechanisms for specifying software

system timing requirements.  Designers could benefit from

approaches to bound the maximum communications delay and

residual error rate between nodes in distributed, real-time

systems.  Designers would profit from an accepted paradigm, with

well-defined semantics, for inter-task communication among

distributed, real-time nodes.  Designers could produce more

effective designs if assisted by methods to enable dynamic

evaluation of alternative designs.
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The current state-of-practice in real-time software design

appears to rely on methods developed two or three decades ago.

A real-time designer partitions software into modules and then,

perhaps with the aid of a pre-run-time scheduler, schedules the

modules to execute in a specific, cyclic order that meets all

synchronization and timing constraints.  The resulting software

is often difficult to understand, to maintain, and to expand.  

Newer, concurrent design approaches emphasize

understandability, maintainability, and expandability at some

cost in deterministic performance.  Recent developments

concerning rate monotonic scheduling theory promise to enable

concurrent designs to achieve effective real-time performance.

Currently, however, effective use of rate monotonic analysis

requires support from underlying operating system mechanisms

that are not yet implemented widely.

This paper found that most design approaches used by

practitioners lack a formal semantic model.  Without such a

model, analyzing and evaluating alternative designs will remain

difficult.  For this reason, much of the current research

surrounding software specification, design, and evaluation

investigates the application of formal models and methods.  In

general, formal models for design can be viewed as behavioral

models or structural models.  Behavioral models include finite

state automata, Petri nets, temporal ordering, and executable

specifications.  These models emphasize the control aspects of a

design.  Behavioral models usually possess several shortcomings:

1) they do not, generally, include the notion of time, 2) they

are subject to state explosions which can make analysis

computationally infeasible, 3) when they are augmented with

higher-level constructs to improve notational convenience, they

lose some of their analytical properties, 4) they often

incorporate variations to support specific needs, and 5) they

sometimes require the designer to learn a difficult syntax.
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Structural models include abstract data types, axiomatic

methods, and temporal logic.  These models emphasize the static

properties of a design and can provide a basis for proving that

an implementation exhibits the desired properties.  Structural

models share a number of weaknesses.  Writing formal

specifications is a difficult, labor intensive activity.  Some

structural models cannot be used to describe the behavioral or

correctness properties of sequential tasks.  When sequential

tasks can be described, most formal models do not account for

specification of timing constraints.

Application of formal models, behavioral or structural,

requires a syntactic model amenable to use by designers.

Several research efforts aim to build a suitable syntax on the

foundation of formal models.  Communicating Sequential Processes

(CSP) led to several languages that, while never gaining a

foothold with practicing designers, influenced international

standard specification languages such as Estelle and LOTOS.

Estelle extends Pascal with a formal model of communicating

finite state automata.  The result is an understandable

specification language that perhaps demands the inclusion of too

much implementation detail.  LOTOS merges a temporal ordering

model with an abstract data type (ADT) model to produce a

language capable of specifying both behavior and structure.

Unfortunately, LOTOS, while a powerful specification language,

embodies several disadvantages.  For example, the LOTOS ADT

language does not support partial functions nor arbitrary

preconditions for operations.  Also, LOTOS specifications cannot

be translated easily into efficient implementations.

A number of ambitious research projects attempt to combine

a range of tools to compose software design environments.  This

paper presented an idealized design environment (IDE) and then

examined four proposed design environments against the IDE.  The

IDE contained tools for specification (including a language,
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analyzers, and a library), for generating, analyzing, and

simulating designs, and for generating tests (functional,

performance, and system).  Design generation tools include a

design modeling language, a design generator, a design editor,

and a design library.  Design analyzers were included for

evaluating correctness and schedulability.  Design simulation

tools included a design configuration language, a design

configurator, and a simulator.

Among the design environments discussed in this paper, SARA

and PROTOB contained the richest set of tools.  SARA exhibits

several shortcomings.  The syntax of various SARA languages

appears difficult to master; the tools set is large and

cumbersome; the user interface is not very friendly; time

constraints are not modeled; SARA behavioral models tend to

suffer state explosion; the designer must build separate SARA

models to evaluate different aspects of a design.

PROTOB overcomes many of the shortcomings of SARA, but

sacrifices some capabilities.  Mainly, PROTOB cannot be used to

analyze a design for correctness; a design can be exercised,

however, and errors can be detected.  In addition, PROTOB

designs can be simulated and can form the basis for generating

implementations in a high-level language such as C or Ada.

The design environment presented by Mars attempts to codify

a deterministic design within a synchronous hardware/software

system.  Mars designs are to be built from identical, simple

hardware components (i.e., high-speed buses and Motorola 68000

processors) and software components (i.e., Mars tasks).  The

designer’s main job is to specify application specific logic

wrapped with Mars tasks and to hone the timing of that logic to

meet the performance objectives of the application.  To

successfully apply Mars a designer must work within the frame

provided; thus, Mars designs cannot generally be moved to other

hardware and software environments.
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Of the four design environments studied, MIDAS was most

limited.  The main goal of MIDAS is to enable simulation of a

design and then to allow that simulation to be progressively

elaborated into an implementation.  MIDAS enables prediction of

average performance, but not of worst-case performance.  MIDAS

provides no support for analysis of correctness.  As with Mars,

MIDAS requires that the simulation hardware be identical to the

hardware on which the real system will execute.

These representative design environments, SARA, PROTOB,

Mars, and MIDAS, collectively illustrate the immaturity of the

current state of research regarding software design; however,

some avenues appear promising.  A design environment should

begin with a modern design method that is known to

practitioners.  Tools added to the design environment should

work from a syntax familiar to designers.  A design environment

must include some means for identifying and repairing the

ambiguities, omissions, and inconsistencies present in informal

requirements documents.  In most cases, the means for achieving

these ends requires translation of informal requirements into a

formal, requirements model.  Tools should be included in a

design environment to help a designer create a design from a

formal, requirements model.

For most complex designs, tools to analyze functional

correctness appear computationally infeasible; thus, an emphasis

should be placed on design exercisers and simulators.  Such

exercisers will require an underlying semantic model of

essential design details.  A method to analyze the

schedulability of a design must also be included in any design

environment.

Methods exist to generate concurrent designs for

distributed, real-time systems.  The use of such methods is

inhibited by an inability to predict the worst-case performance

of the resulting designs.  (Rate monotonic scheduling theory
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shows potential to overcome this barrier.)  In addition,

alternative designs are often not considered because no means

exists to evaluate one design against another.  (Such evaluation

is particularly difficult for concurrent designs.)  Usually,

designers must await system testing to discover design flaws

that might require major redesign and re-implementation of

software.  Finding and correcting design problems as early as

possible should improve the quality and reduce the cost of

distributed, real-time software.  
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