Desi gning D stri but ed,
Real - Ti ne Systens
Kevin L. MIlIs

I NFT 796 SUMVER 1993
DI RECTED READI NGS | N SOFTWARE ENG NEERI NG
WTH DR H GOVAA
GEORGE MASON UNI VERSI TY

Designing Distributed, Real-Tine Systens

Kevin L. MIls
August 25, 1993

In a 1987 article <considering future prospects for
I ncreasing the productivity of software devel opers, Frederick P.
Brooks identified inherent and arbitrary conplexity as two
fundamental properties of software that limt the productivity
gains software devel opers can expect to achieve. Dr. Brooks
based his thesis on his experiences |eading the design and
devel opnrent of the original |IBM 360 operating system where he
first encountered the conplexity of software systens, and on the
two decades since, during which software engineering research
has inproved productivity nmarginally by addressing those aspects
of software design and developnent that Dr. Brooks views as
acci dents. In the years since Dr. Brooks’ sage article
appeared, software system design and devel opnment has continued
to increase in conplexity as conputers are applied to nore
probl ens, probl ens t hat i ncreasingly i nvol ve real -tinme
requirenents and distributed conputing. Conpl exity, both
i nherent and arbitrary, renmains, then, an essential problem
faced by designers of software systens, and particularly by
designers of distributed, real-tinme systens.

The present paper investigates the nature of conplexity as
pertaining to design of distributed, real-tine systens. Thr ee
main questions are considered. First, what problens face
designers of distributed, real-tinme systens? Answering this
gquestion reveals the essential conplexity inherent in the
software for such systens. Second, what nethods can designers
use to address the problens they face? Sonme of the nmethods
di scussed are currently wused routinely by designers, while

others remain the subject of research. The present paper
eval uates design nethods against the needs of distributed,
real -time system designers. Finally, the paper considers how
software design environnments mght inprove a designer’s ability
to manage the conplexities of designing distributed, real-tine
systens. To address these questions, seven sections follow this
i ntroduction.

Section |1, The Design Problem begins by examning the
general nature of design: its definition, its purpose, and
associated activities. The concept of design nethods is
introduced as an essential tool to assist designers. The

section then delves into specific goals that nust be achieved by
designers of distributed, real-tine systens. The section closes
with a discussion of the special considerations faced when a
real -tinme systemis al so distributed.

Secti on L, Sone Desi gn Appr oaches, provi des a
designer’ s-eye view of the current practice of real-tinme system
design. The section begins with a discussion of the question of
schedul ability. The major approach to designing hard-real-tine
systens (HRTs) over the past three decades revolves around a
fi xed schedul e of nopdul e executions, conputed off-line, coupled
with a cyclic executive that enforces the schedule. |In general
this approach results in determnistic software that neets all
real -time requirenents, but also in a software system that is
difficult to understand and naintain. More recent approaches
treat real-time software as software systens first and real-tine
systens second. This neans that these approaches are used to
design software that, while understandable and maintainable, is
concurrent, and thus operates non-determnistically. Such
non-determnism traditionally calls into guestion t he
schedul ability of concurrent designs; however, concurrent design
approaches are growing in popularity due to a new scheduling
theory called rate nonotonic analysis (RVA).

Dependi ng on which view a designer takes on the question of
schedul ability, di fferent desi gn appr oaches m ght prove
necessary. This paper exanmines two general design approaches,
determnistic and concurrent, and considers sone exanples of
each approach

Havi ng considered the problens faced by designers and then
havi ng exam ned sone desi gn approaches, the paper recapitul ates,
in section 1V, a set of open issues in the design of
distributed, real-tine systens. The issues identified represent
the hard problens that designers nust solve, but for which no
routine solution is avail able.

Section V, Formal Methods for Designers, reviews fornal
nodels and nethods that various researchers believe mght
address the open issues identified in section IV. Most of the
formal nodels and nethods discussed are supported by autonated
t ool s. For each nmethod, the basic notation, nodel and
properties are described, sonme specific exanples are discussed,
and, where applicable, a few representative automated tools are
I denti fi ed. The discussion includes a summary of the strengths
and weaknesses of each nethod.

In sone cases, the formal nodels and nethods reviewed in
section V conprise a foundation for |anguages that can be used
to describe designs and then to inplement prototypes of those
designs. Section VI, Languages for Designers, considers severa
desi gn | anguages that enbody fornmal nodels and nethods. |ncluded
in the discussion of each |anguage are: 1) the basic notations,
semantic nodels and properties, 2) some representative
i npl ement ati ons, and 3) the strengths and weaknesses.

Section VII, Design Environnments, synthesizes the concepts
I nvestigated in previous sections of the paper. Synthesis is
achieved by envisioning a design environnent that m ght enable
the designer of distributed, real-tinme systens to develop and
descri be understandable designs that are functionally correct

and that neet specified perfornmance requirenents. The desirable
traits of such a design environnent are sketched, then a few
exanpl e design environnents are described and eval uated agai nst
the set of desired traits.

A concl uding section (VIIl) provides a summary of the ideas
advanced in the paper. Designers of software systens are
challenged by an inherent conplexity; and the nost conplex
software known today is enbedded in real-tinme systens. In the
future, as real-tinme system conponents becone distributed, the
conplexity of such software wll junp. Wi | e approaches exi st
today to deal wth the design of real-tinme systens, sone
significant open issues remain. Addi ti onal issues arise when
real -tinme systens are also distributed systens. Researchers are
I nvestigating formal nethods and nodels, and related |anguages,
for addressing many of the problenms faced by designers of
real -tinme and distributed systens. In sone cases, researchers
propose design environments to assist the designer through an
integrated set of tools. This paper attenpts to identify the
desirable traits of an environnent for designing distributed,
real -tinme systens, to show that the current state of research
regardi ng software design lacks maturity, and to identify sone
of the nore prom sing avenues for continued worKk.

I1. The Design Problem

The design problem is simlar in nature to the problem
faced by the author of this paper as he sits at a keyboard and
gazes upon a white sheet of paper. The author knows in the main
what to say but he wonders just how best to say it. Thi s
problemis fundanentally different from the problem of a natura
scienti st. A scientist examnes the world around us in an
effort to discern cause and effect relationships and to describe
those relationships in the form of mathenmatical equations and

- 4 -

scientific laws that enable us to predict the outconme of various
physical situations. 1In short, a natural scientist is concerned
with what is, and why. A designer, on the other hand, is
concerned with what ought to be, and how.

This essential difference between natural science and
design led Herbert Sinmon to include design within the category
of disciplines that he dubbed the sciences of the artificial.
[SI MOB1] According to Sinon, "[d]esign...is concerned with how
things ought to be, with devising artifacts to attain goals."
[SIMXB1, p. 133] Four other, simlar, views of design were
reported by Peter Freeman [FREEB0] in a survey he conducted: 1)
design is an imaginative junp from present facts to future
possibilities, 2) design is finding the right conponents of a
structure, 3) design is decision-making in the face of
uncertainty with high penalties for error, and 4) design is
sinmulating, iteratively, a proposed solution wuntil confident
about the outcone. Freeman goes on to suggest that design has
t hree purposes.

One purpose of design is to discover the structure of a
probl em Wthin the realm of software this purpose mght be
fulfilled by reviewing the infornmal software requirenents
specification and then by analyzing the requirenents using sone
systemati c net hod. A second purpose of design is to create an
outline, or architecture, of a solution for a problem For
software design, this purpose mght be nmet by describing a set
of software conponents and the relationships between them in

enough detail that further design and then coding can be
performed on each conponent. A third purpose of design is to
evaluate the results of proposed architectures against the
stated goals (i.e., the requirenents). For software design,
this purpose is often handl ed poorly. Typically, evaluation is
del ayed until system testing. Design flaws discovered during
system tests can be quite costly to repair. A nore nodern

approach enploys rapid prototyping to validate the infornal
requi renents; however, prototypes often encode a de facto
solution to the requirenents and thus usurp a designer’s ability
to propose and eval uate various sol utions.

To neet his purposes a designer usually engages in a nunber
of intellectual activities. [FREE80] One such design activity
m ght be called operationalization. Qperationalization entails
improving the informal requirements so that anbiguities are
renoved, inconsistencies are reconciled, and inconpleteness is
renoved. This is a necessary part of the designer’s job because
| ater design activities depend upon the system requirenents.
Anot her design activity involves abstraction. Here the designer
general i zes about particular properties of the problem or of a
possi bl e sol ution; certain details are set aside at critical
nonents so that the designer can concentrate on a specific
i ssue. Associated with abstraction is elaboration. A designer
enpl oys elaboration to nove down a hierarchy of Ilevels of
abstraction so that essential details can be provided at an
appropriate tine. Probably the nost inportant intellectual act
during design is verification. A designer nust verify that a
proposed solution neets the requirenents, any inposed standards,
and any extant constraints. A designer nust also be able to
verify the perfornmance characteristics of a proposed sol ution.

The essence of design, as enbodied by the four intellectua
activities of operationalization, abstraction, elaboration, and
verification, 1is decision-making. Unfortunately, the record
reveal s that designers do not always nmake sound deci si ons.

Experience with | arge software systenms shows that over
hal f of the defects found after product rel ease are
traceable to errors in early product design
Furthernore, nore than half the software life-cycle

costs involve detecting and correcting design flaws.
[BERE84, p. 4]

To aneliorate these problens researchers have focused on the
devel opnment of design nethods. Several design nethods for
distributed and real-tine systenms are discussed in section 111
of this paper, but for now consider, in general, how a design
met hod can help. A design nmethod specifies: 1) what decisions a
desi gner must nake, 2) how those decisions should be nmade, and
3) in what order they should be made. [FREE80] A design nethod,
then, should provide the intellectual roadnap that enables a
desi gner to refine requirenments successfully, to apply
abstraction and elaboration correctly, and to achieve design
verification. Design nethods aim to inprove the skills of
software designers so that the designs produced by designers
using a given nmethod achieve a reasonable quality on a
repeat abl e basi s.

To this point in the paper the reader should have gained a
general understanding of design, of the purposes of design, of
the intellectual activities involved in design, and of the way
in which design nethods mght aid a designer. From here, the
di scussion becones nore specific to software design, and
particularly to design of distributed, real-tine software.

A Design Goals For D stributed, Real-Tinme Software

The goals for designers of distributed, real-tinme software
build upon the goals for designers of general software systens.
Bef ore considering specific design goals, a short discussion to

di stinguish distributed, real-time software from general
software may prove hel pful. Software, generally, is designed
and inplenented to fulfill a set of functional requirenments and
non-functional requirenents. Functional requirenents express

the necessary logical characteristics of a correct solution.
Non- f uncti onal requi renents descri be ot her oper at i onal
constraints, such as performance, reliability, and specific
target hardware. For real-time systenms, the non-functiona

requi renents take on an added i nportance. For so-called soft
real -tinme (SRT) systens (sonetinmes referred to as interactive
syst ens) the performance requirenents m ght indicate a
performance target given a specified load on the system for
exanple, "95% of all transactions wll be processed in under
five seconds when the system | oad peaks at 100 transactions per
second. " The understanding of such requirenents is that when
system |oad exceeds the peak, or on five percent of the
occasions that the load is at or bel ow peak, system perfornmance
may degrade w thout any real harm For so-called hard real-tine
(HRT) systens (sonetinmes referred to as reactive systens) the
performance requirenents can form a three-level hierarchy: 1)
those that nust be net for correct system function, 2) those
that are soft (in the sense fornerly discussed for SRT systens),
and 3) those that have nore lenient time constraints (usually
cal | ed background functions). An exanple of a HRT requirenent
m ght be that "a tenperature sensor shall be polled every 100

ns. For such a requirenent, a software solution that polled
the sensor twice at 101 ns apart would be inadequate. For
real -tinme software, then, the perfornmance requirenents take on a
functional flavor in that a systemthat does not neet the stated
performance constraints is considered functionally degraded for
soft real-time requirenments and is considered functionally
incorrect for hard real -tine requirenents.

Wiile real-tine requirenments conplicate software design by
giving a functional flavor to sone otherwi se non-functional
requi renents, distribution of software functions anong several
processors introduces another type of conplexity. Di stribution

of software functions ensures that concurrent processing wll

occur. Concurrency leads to a hidden set of correctness
requirenents i nvol vi ng i nter-process synchroni zati on and
comuni cat i on. The requirements arising from concurrency are
seldom nentioned specifically in a software requirenents

docunment but a system wll be wunable to neet its stated
functional and non-functional objectives unless concurrency is
properly handl ed.

G ven the foregoing discussion of real-tine requirenents,
distribution and concurrency, the reader may be surprised to
|l earn that designers of distributed, real-time systens aim to
achieve the sane three general goals as designers of any
sof t war e: 1) understandability, 2) functional correctness, and
3) performance sufficiency. Surprised or not, the reader should
al ready suspect that neeting these goals wll be nore difficult
for designers of distributed, real-tine software than for
designers of sequential, non-real-tinme software. The foll ow ng
par agr aphs confirmthe reader’s suspicions.

To achieve understandability the software designer nust
neet four sub-goals. First, the designer mnust ensure conplete,
consi stent, and unanbi guous functional requirenents. Sof t war e
requi renents docunents typically <consist nostly of natura
| anguage descriptions augnented with sone formal specifications
that are generally applied unevenly. The designer nust seek to
i nprove the rigor of the specification, to fill the gaps, and to
resolve contradictions. Wthout such efforts the designer
cannot achieve an understanding of the problem sufficient to
propose and eval uate sol utions. The remai ning sub-goals relate
directly to design.

The designer nust provide a clear structuring of the system
into processes and information hiding nodules. Then the
designer nust specify the behavior of the processes and the
functions of the information hiding nodules. Finally, the
designer nust establish traceability between the structure and
specification of the design and the software requirenents. The
result of achieving these sub-goals, is an understandable, but
static, design of a software architecture.

Next, the designer nust work to ensure the functional
correctness of the design at the conponent level and at the

architectural |evel. At the conponent Ilevel, the designer
shoul d specify parti al correctness criteria for each
sequentially executing path. Such paths typically include the

program flow of control (one for each task when the design is
concurrent) and the services provided by each information hiding
nodul e. In general, the designer should specify preconditions
and post-conditions for each design conponent such that if the
preconditions of the conponent are satisfied on entry to the
conmponent, then the post-conditions will hold upon exit fromthe
conponent. These specifications will enable conponent designers
and coders to understand precisely what their conponent nust
achieve, as well as to understand what should be provided to and
expected from conponents with which their conmponents interact.
Such specifications can also serve as a foundation for unit and
integration testing as the design is inplenented.

At the system level, designers of concurrent systens have

two concerns regarding functional correctness. One concern
i nvol ves ensuring the absence of undesirable properties, such as
deadl ock, livelock, unfairness, failure, and unreachabl e states,
that can occur in concurrent designs. [KARA91, LIUW90, LEVI 90,
XU93] Deadl ock occurs when two or nore tasks cannot proceed

with processing because they are waiting on resources that are
held by each other or they are waiting to synchronize at
mutual ly conflicting points. Deadl ocks can creep into a design
in a variety of ways and can be difficult to detect, to isolate,
and to elimnate. Li vel ock occurs when one or nore tasks in a
concurrent system continue to cycle but are unable to nmake any
progr ess. Livelock is a particular problem in distributed
systens where nornal behaviors nay be repeated indefinitely due
to an aberrant design. Unfairness occurs when one or nore equa
priority tasks, anbng a conpeting set, are given preferential

- 10 -

access to a resource, or when one or nore higher priority tasks
consune so nuch of a resource that an inadequate amount is |eft
for lower priority tasks. Unfairness conmes in two forns: hunger
and starvation. A task suffers hunger when an insufficient
amount of a needed resource is available. A task suffers
starvati on when none of a needed resource is available. Failure
occurs when tasks attenpt to interact but find that conditions
prevent such interaction or when an unhandl ed exception occurs
wWithin a task. Unreachable states result when a design includes
l ogic for handling conditions or events that cannot occur. Such
unreachabl e states may result from an inadequate design or from
poor |y understood system requirenents.

A second concern of the designer, regarding functional
correctness at the system level, is to establish that a
concurrent design exhibits certain desirable properties, such as
proper synchroni zation anong comunicating tasks, nmut ual |'y
exclusive access to shared resources, bounded behavior, and
conservation of system resources. [DILL90, MJRAB4, MJIRAB9,
W LL90, ZAVES6] Proper synchroni zation ensures that tasks
obtain the necessary input before executing and that external
events are properly ordered by the software. Controlling shared
access to system resources prevents corruption of system data.
Ensuring bounded behavior prevents queue overflow and the
subsequent |oss of external or internal events. Veri fying
conservation of resources ensures that the software does not
consune resources that are intended to persist for the duration
of the execution.

The final concern of the designer is to neet the
performance constraints for the system [LIEN92, LIU90, NATA92,
LEVI 90, XW93] An initial conplication arises when the timng
constraints in the requirenents specification are not conplete
or consistent. So the first concern of the designer is to
properly specify the system performance constraints. After a

- 11 -

systenis timng requirenments are properly understood, the
designer’s mmjor performance concern, for hard real-tine
systens, beconmes ensuring schedulability of the software design

under worst-case assunptions. This involves estimating or
prescribing the worst-case execution tine of each design
conponent and then establishing that the software will neet all
deadlines for periodic processes, wll achieve the required
response tinme for aperiodic events, and will naintain stability
under transient, peak | oads. A "...perplexing aspect of this
[tinme] problem is that nost system design and verification
t echni ques are based on abstracti on, whi ch i gnor es
i npl enentation details...[but]... timng constraints are derived

fromthe environment and the inplenentation.” [STANB8, p. 14] A
subsidiary concern of the designer is to nmaximze the software
per formance under typical, sustained | oads.

In sunmary, designers of software are concerned wth
creating understandable designs that can guide inplenentation
and provide traceability to the requirenments specification
however, when the designs include concurrency a nunber of
inmplicit functional requirenments nust be addressed. Concur rent
designs nust be free from deadl ock, livel ock, failures,
unfai rness, and unreachable states; at the sane time concurrent
desi gns nust exhibit proper synchronization and resource sharing
anong tasks, nust exhibit boundedness, and nust conserve system
resour ces. Designers of real-time systens nust also be
concerned about specific performance characteristics: 1)
maxi mal performance wunder a sustained load for interactive
systens and 2) worst-case performance under transient |oads for
reactive systens. Many of the issues faced by designers of
concurrent, real-tine systenms can only be addressed through a
dynam c evaluation of the software design. Unfortunately, such
dynami ¢ evaluations often occur only after the system is
i mpl ement ed.

As conplicated as concurrent designs can be, concurrent
systens are actually a subset of distributed systens. That is,
distributed systens are naturally concurrent, but concurrent
systens need not be distributed. When a concurrent system is
also a distributed system the software designer nust address a
special set of issues that can further conplicate the design.
These speci al considerations for distributed systens are
di scussed next.

B. Speci al Considerations For D stributed Systens

Designers of distributed systenms face an extra decision
during system structuring -- the allocation of processes and
data to nodes. [ROFR92, SUMMVBI] Distributed system design
met hods generally provide guidelines to help a designer wth
t hese decisions; however, the effect of such decisions on system
performance and on inplicit functional correctness remain no
better addressed than is the case for concurrent designs.

When processes and data are distributed anong nodes,
further conplications arise due to uncertainties regarding
I nter-node conmunication. [KLEI85, SHAT84, STAN82, STANS8S8] An
initial conmplication is selecting a suitable inter-node
nmessage- passi ng paradigm to use. Wthin concurrent software,
asynchronous nessage-sending (sonetines called |oosely-coupled
comuni cation) provides a natural nodel for producer-consuner
rel ati onshi ps. O course, in centralized, concurrent designs
the loss of a nessage is seldom of concern. Shoul d tasks in
separate nodes need to conmunicate, yet remain decoupled, sone
sort of asynchronous nessage-passing nust be provided between
nodes. In such cases, the error properties (discussed bel ow) of
t he conmmuni cati ons path becone a grave concern.

When synchronous nessage-passing between tasks on separate
nodes is needed, a decision nust be nade whether to support
synchroni zation with or without reply, or both. Decisions taken
here will dictate the requirenments that nust be net by the

- 13 -

i nt er-node comuni cati on prot ocol s. Shoul d i nter-task
rendezvous be needed across nodes, then synchronous nessage
sending with reply will likely be required.

In the event that a client-server relationship exists
between tasks on separate nodes, synchronous nessage-passing
with reply mght provide a natural nmeans to inplenent a renote
procedure call (RPC) mechanism Even in this case, the designer
must know what senmantics the wunderlying RPC protocol wll
provi de. Some RPC protocols can guarantee "at-|east-once"
semantics, i.e., a renote call wll be executed at |east once,
but nmaybe nore than once. QO her RPC protocols provide
"exactly-once" senmantics, i.e., a renote call wll be executed
exactly once. Even with these issues settled, a semantic is
needed to interpret exceptions returned from RPCs.

Aside from the many possible paradigns for sendi ng nessages
via network, the designer of distributed systens nust also be
concerned with paradigns for receiving nessages from a network.
When a central system is used to pass nessages between tasks,
the semantics are provided by the operating system or real-tine
executive. When a system is distributed around a network, the
desi gner nust becone involved in the nmessage reception senantics
that are needed for a particular design. A receiver mght wsh
to wait for any nessage arriving at a queue. A receiver nmght
also wish to wait only for some specific nmessage or on a
sel ected set of nessages. Perhaps a receiver needs to wait on a
set of nmessage queues based on priority. \Whatever decisions are
made regardi ng nessage reception paradigns, a suitable set of
protocol s nust be designed and i npl enented. The reader shoul d
bear in mnd that the protocol processing itself constitutes a
di stri buted, concurrent system that nmay also face hard,
real -time requirenents.

In addtion to selecting paradigns for sending and receiving
nmessages, the designer nust determne the level of integration

- 14 -

needed between the nechanisns for external conmunications,
i nternal events, and external interrupts. When these paradi gns
are integrated (as they are for exanple in the Ada |anguage),
the designer’s task may be significantly eased. On the other
hand, achieving the required level of integration may prove
i npractical, especially when the nodes execute under different
operating systens.

Anot her consideration for the distributed system designer
Is the need for nulti-addressee nessage passing. Do the
applications require multi-casting or broadcasting? If so, can
t he comruni cati ons network support these features? \What effects
will these features have on system perfornance?

Beyond nessage passing paradigns, the designer nust also
consider the physical properties of the conmmunications path and
the residual error properties of communications protocols.
Sendi ng nessages between nodes will incur a delay for access to
the network, for transmission of the nessage, and for
propagati on. In addition, the protocol processing software
itself wll add to the mnessage del ay. And these delays are
general ly stochastic. How can worst-case delay be conputed for
nessages that pass between nodes? Many tines nessages are
garbled, msordered, or lost during transit between nodes.
These errors can introduce random del ays when the comuni cati ons
protocols attenpt to recover from them What happens if the
comuni cations protocols cannot recover? Are sone forns of
errors acceptable in order to better bound the delay? What
happens if one of the nodes fails? Can pending transactions be
recovered or nust they be restarted?

Anot her issue that sometinmes occurs in a distributed system
is inconpatibility anong data representations. To address such
i nconpatibilities, nmethods exist for encoding data in a standard
transfer syntax that can be recognized and decoded by al
systens in the network. O course, the processing tine for

- 15 -

encodi ng and decoding the data adds to the comunicati ons del ay
and, thus, nust be taken into account by the designer.

Anot her issue that appears whenever systens are distributed
and accessible by a network is that of security. For a
real -tinme system particularly a reactive control system or an
interactive systemwith access to confidential information, five
security issues nust be considered. First, a neans nust exi st
to authenticate that a nessage arriving from an external process
does indeed originate with that external process. Second,
having established the identity of an external process, a neans
nmust exist to control the access of the external process to only
those resources to which that process is entitled. Third,
nmessages exchanged between nodes on a network nust be protected
so that the nessage sent is exactly the nmessage received, or
el se the receiver should be able to detect that the nessage has
been changed. In sone situations, nessages exchanged between
nodes might require confidentiality so that observers outside of
the comruni cati ng nodes cannot eavesdrop on the conversation.
Finally, in a selected set of applications, requirenents m ght
exist to prevent the sender of a nessage from later claimng
that the nessage was never sent.

As the reader can readily see, when conponents of a design
are distributed a bewildering array of issues faces the software
desi gner. In truth, the present state of design practice is
unable to cope in any general sense with distributed, real-tine

syst ens. The best that is achieved in practice today is to
build a distributed, real-tinme system from honbgeneous
conponent s, to provide dedicated comunications resources

between nodes, to isolate the network physically to obviate
security concerns, to enploy forward error correction techniques
to keep comunication errors within known bounds, to arrange hot
standby nodes to take over when critical nodes fail, and to use
sinpl e asynchronous or RPC nechanisns to conmmunicate between

- 16 -

processes on distinct nodes. Even given these restrictions,
design of distributed, real-tinme systens remains a difficult way

to nake a living. This should be apparent to the reader who
recalls the difficulties attendant to designing concurrent,
real -tine systens. Distribution, even when severely curtailed,

adds to the designer’s chall enge.
To close this section on the design problem the follow ng
extended quote from W Beregi of |BM describes the state of

sof tware design practi ce.

We have commonly defined architecture using anbi guous
nat ural |anguage, diagrans, and other freeform
notations. Such expression hinders our ability to
comuni cate accurately the systenis structure and
prevents us fromfornally analyzing the structure and
dynam ¢ behavi or of the system Thus we design and

I mpl ement functions based on structures and protocols
that are weakly specified, poorly comuni cated, and
not formally validated during design. W are unable
to test the feasibility of our initial architecture

| deas or conpare alternative proposals. W are unable
to exam ne the architecture specification and
determne the effect that architecture tradeoffs and
function placenment decisions have on system
performance, usability, and reliability. To explore
t hese aspects, we nust either create expensive,

t hrowaway nodels of the systemor wait until we
integrate the inplenmented functions late in the test
cycle. Costs usually dictate that few, if any,
alternative designs are considered. Poor architecture
deci sions can propagate through all stages of a

proj ect and cause costly rework to undo design and

I mpl enent ati on based on those decisions. [BERE84, p.
4]

Beregi goes on to observe that each new systemis usually custom
designed -- existing, successful designs are not reused because
no ready nmade substructures or subassenblies exist into which
new conponents can be fitted.

The next section examnes how real-tine systens are
desi gned today. First, the question of schedulability in hard
real -time systens is considered. Then two different types of

- 17 -

approaches to designing real-tinme systens are described. Wthin
each approach, sone specific design nethods are surveyed.

[11. Some Design Approaches

Approaches to designing real-tinme systens can be classified
into two general categories. One category, determnistic
approaches, enconpasses real-tine design nethods that are nost
often used in practice and that have at least a thirty-year
hi story. The second category, concurrent approaches, are
gaining in popularity, but have only about a ten-year history of
use in real-time applications. The conmunity of researchers and
practitioners of real-tinme design nethods remains divided on
whi ch class of nethods achieves the best results. Supporters of
determ ni stic approaches argue that concurrent designs cannot
ensure that application timng constraints wll be net.
Supporters of concurrent designs argue that determnistic
approaches result in designs that are difficult to understand
and i ntain. Further, advocates of concurrent approaches
believe that recent results in the area of rate nonotonic
scheduling theory can be used to ensure that concurrent designs
will rmeet application timng constraints. These argunments are
considered in nore detail bel ow.
A The Qestion O Schedul ability

Most hard real-tine (HRT) applications consist of periodic

tasks wth hard deadlines and a snmall nunber of aperiodic tasks

whi ch require short response tinmes. To ensure that a HRT system
neets required deadlines and response tines a feasible schedule
must exist for the software tasks conprising the system A
feasible schedule exists if every task begins execution when
enabled to run, or later, and every task still neets its
establi shed deadlines. Scheduling is conplicated by the fact
that certain relationships nust be observed between the tasks.
For exanple, sone tasks nay produce results that are needed by
other tasks, thus inplicitly forcing an ordering requirenment
anong task executions. As another exanple, tasks that share
access to resources nust be kept from sinmultaneous access to
those resources. Anot her consideration is that swtching
between tasks introduces overhead; thus, tasks should be
scheduled so as to reduce preenptions. O course, preenptive
scheduling is possible only when tasks do not require mnutually
excl usive access to shared resources.

These HRT scheduling constraints are difficult to neet,
especially in conplicated systens. One approach to meeting such
constraints advocates using a pre-run-tine scheduling algorithm
to account for all inter-task relationships and to then search
for a feasible schedule that will satisfy the timng constraints
of the application. [PEN&3, SHEP91l, XW93] First, the tasks in
the system are identified and classified as periodic or
asynchronous. Each periodic task is characterized with a set of

paraneters: period, worst-case execution time, deadline, and

- 19 -

rel ease tinme (i.e., the delay between the beginning of a task’s
period and the wearliest tine the task can run). Each
asynchronous task is characterized by a simlar set of
paranmeters: mninumtine between two consecutive invocations of
the task, worst-case execution tinme, and response tine. Second,
any relationships between the tasks are identified and
descri bed. These relationships typically include precedence
ordering (e.g., task A nust execute before task B), exclusion
(e.g., execution of task C be interleaved with execution of task
D), and resource constraints (e.g., task E nust run on processor
Y). Such inter-task relationships can beconme quite conplex,
especially in a large system of tasks running on multiple
processors.

"For satisfying timng constraints in hard real-tine
systens, predictability of the systemis behavior is the nost
I mportant concern; pre-run-time scheduling is often the only
practical neans of providing predictability in a conplex
system™" [XU93, p. 73] To enable pre-run-tinme scheduling of
conpl ex real -tinme syst ens, t he t ask descri ptions and
rel ati onshi ps nust be encoded for use by an automated search
al gorithm In general, such algorithnms use heuristic, branch
and bound searches to seek a feasible schedule. [PEN&3, SHEPI1,
XU93] Xu and Parnas identify and evaluate over twenty

pre-run-time scheduling approaches for real-tine systens. [XU93]

Advocates of pre-run-tine scheduling can point to specific
practices, used in concurrent designs, that reduce the
predictability of a system [XU93] One such practice is
assigning static priorities to tasks (this is the only approach
supported, for exanple, by the Ada |anguage) and then to
all ocate resources in a strict priority order. Such practices
can result in mssed deadlines, because in certain situations a
processor nust be left idle, so that deadlines can be achieved,
even though sonme task nay be ready to execute. In essence, Xu
and Parnas argue that pre-run-tinme scheduling can use gl obal
know edge to determine a fixed schedule that wll neet
deadl i nes, while the local know edge encoded as task priorities
results in non-determnistic, run-tinme behavior that can cause
m ssed deadl i nes.

A second practice, standard in concurrent designs, that can
lead to timng problenms is the wuse of conplex run-tine
mechani sms for task synchronization and nutual exclusion (e.g.
semaphores, |ocks, and nonitors). Use of such nechani snms makes
timng difficult to predict, incurs overhead in context
switching, and can |lead to deadlock and starvation. O course,
properly wused in careful designs, run-tine synchronization
mechani sms should not cause deadl ock and starvation; however,
usi ng such nechani snms can result in unpredictable waiting tines.

Anot her bad practice that Xu and Parnas find to be conmon

in concurrent designs is that of allowng external events to

- 21 -

I nterrupt processes and occupy system resources at random ti nes.
Such interrupts make task timng difficult to predict and incur
unnecessary context switching tine. Xu and Parnas argue that
nost internal or external events can be buffered until sone
periodic task can process them thus, that a determnistic
schedule can be maintained even in the face of asynchronous
events.

As a final caution, Xu and Parnas assert that using
stochastic sinmulations, as system designers often do, to verify
the performance of a design is unsatisfactory. Such sinulations
can indicate the presence of flaws, but not their absence.
Al so, stochastic simulations show only average timng behavior
not the worst-case performance of the system This view is
shared by other researchers. [MAHI84]

Advocat es of concurrent designs have long held that cyclic
executive approaches require application software to be divided
into execution units as dictated by timng and synchronization
requi renents rather than by the logic of an application. As a
result, advocates of concurrent designs argue that «cyclic
designs reduce the understandability, mai ntainability, and
extendibility of the software. Concurrent designs, on the other
hand, enable designers to nanage tasking at an abstract |evel
divorced from the details of task execution. But, because in
HRT systens these concerns are secondary, advocates of

concurrent designs have been unable to convince nost

- 22 -

practitioners that concurrent approaches to HRT systens are
feasi bl e. The recent energence of rate nonotonic scheduling
theory m ght change this situation

Rat e nonotoni c theory assures

that as long as CPU utilization of all tasks lies

bel ow a certain bound and appropriate scheduling

al gorithns are used, all tasks will neet their
deadl i nes without the programer know ng exactly when
any given task will be running. Even if a transient
overl oad occurs, a fixed subset of critical tasks wll
still nmeet their deadlines as long as their CPU
utilizations lied within the appropriate bounds.

[SHA90, p. 53]

Rate nonotonic theory consists of four theorens that specify how
a concurrent system of tasks will behave. [OBEN93, SEI 92, SHA90]
Each theoremis considered bel ow

The first two theorenms address scheduling for n
I ndependent, periodic tasks, each assigned a fixed priority with

hi gher priorities going to tasks with shorter periods.

Theorem 1. n independent periodic tasks schedul ed
using rate nonotonic analysis wll always neet
deadl ines if:

n
2> Ci/Ti <n(2Y"-1) =U(n) where
i=1

C is the execution tine of task i,

T, is the period of task i, and

Un) is the CPU utilization of n tasks. [SHA90, p. 54]

Theorem 2. For a set of independent periodic tasks, if
each task neets its first deadline when all tasks are
started at once, then the deadlines wll always be net
for any conbination of start tinmes. [SHA90, p. 54]

G ven a value for n, the bound U(n) can be conputed. As n - oo,
U(n) approaches 69% So, for a large system the worst-case CPU

utilization for rate nonotonic scheduling (RM5) to hold wll
| eave 31% of the CPU capacity unused. Det erm ni stic scheduling
with cyclic executives can achieve nuch higher CPU utilization
and still ensure that deadlines are net. Proponents of RMS
point out that 31% CPU idle tine is the worst-case and that a
nore likely figure for a randomy chosen set of tasks is 12% CPU
idle tine. Further, RMS advocates argue that if Un) is
exceeded, the critical tine zone theorem (Theorem 2) of RMS can
be used to determne if deadlines can still be net. I n ot her
words, Theorem 2 states that if any schedule can be found such
that when all tasks are started together the deadlines are net,
then the task set is schedul able, regardl ess of execution order.
Rat e nmonotoni c theory expresses this as a nmathematical test that

is captured in a third theorem

Theorem 3. A set of n independent periodic tasks schedul ed
by rate nonotonic analysis (RVA) will always neet its
deadlines, for all task phasings, if and only if,

Oi,1<i<n,

min(k,1) O R zjzlcj%dl—jkm wher e

is the execution tinme of task j,
T is the period of task j, and

Ri ={(k,)l1sk<i,|=1,..Ti/TJ [SHA90, p.55]

This theorem expresses formally the checking required by Theorem

2.

Rat e nonotonic theory guarantees that the n periodic tasks
within the schedul able set will neet their deadlines even if the
CPU is overl oaded. The price of this guarantee is that sone
conputationally expensive tasks my not fit wthin the
schedul abl e set. Should a critical task not fit wthin the
schedul able set, RMVM5 allows such a task to be divided into a
nunber of tasks wth |ower conputation times and shorter
peri ods. In this way, a critical task can be inserted into the
schedul abl e set as a group of tasks. (OF course, artificially
dividing a task into sub-units to achieve schedulability incurs
the penalties of reduced understandability, naintainability, and
extendibility.)

As presented so far, RMS addresses only periodic tasks;
however, aperiodic tasks within a real-tinme system nust also be
scheduled to neet response tine goals. Rat e nonotonic theory
allows aperiodic tasks to be treated as periodic tasks with a
period equivalent to the maxinmum rate at which its associated
events enter the system By nodeling aperiodic tasks as
periodi c tasks, the rate nonotonic analysis theorenms can be used
to schedul e them

A nore difficult problem for RVM5 deals wth task
synchroni zati on. As pointed out by advocates of determi nistic
schedul i ng, semaphores, | ocks, nonitors, rendezvouses, and
simlar synchronization nechanisnms can prevent a system from

nmeeting deadlines by introducing non-determnistic delays as

- 25 -

tasks wait for access to resources or for a rendezvous. One way
to avoid these problems is to ban preenption during critical
sections. Another nethod, advocated by sonme proponents of RMS5,
iIs to inplement a priority ceiling protocol. [SHA90] A priority
ceiling protocol would require two conventions: 1) when a task
begins to block the execution of a higher priority task, then
the priority of the blocking task will be raised to that of the
hi ghest priority task that is being blocked and 2) a new
critical section can start execution only if the section
executes at a priority higher than the one it preenpts.

If a ceiling priority protocol 1is inplenmented, then a
concurrent design’s schedulability can be assessed using the

fourth theorem of RMVS.

Theorem 4. A set of n periodic tasks using the priority
ceiling protocol can be schedul ed using RVA for all task
phasi ngs, if

(L, Ci/T;) +max(B1/T1, ..., Bn-1/Tn-1) < n(2Y"—1) where

B. is the longest duration of blocking that can be
experienced by task i.

Unfortunately, nost run-tine systens and real -tine executives do
not yet support a priority ceiling protocol, although sone do
support an less capable priority inheritance protocol that
allows a blocking task to increase its priority to the |evel of
the highest task it is blocking. Anot her unfortunate fact is
that nmany concurrent designs are targeted for inplenentation in

Ada, yet the Ada | anguage does not provide the support necessary

- 26 -

to use RMS effectively. Still, RVMA can be used with Ada
provided certain coding guidelines are followed and provided
that a special-purpose run-tine system is available that
I npl ements a priority ceiling protocol. [SHA90]

Rate nonotonic analysis can be expected to have a |arger
role in the future because its principles have been adopted in
energi ng standards for FUTUREBUS+ (a hardware bus intended for
distributed, real-time systens), for Posix (a standard operating
system interface), and for Ada 9X (the next generation Ada
| anguage and run-tinme system. [OBEN93] A few vendors of Ada
run-time systens and real-tinme executives are already offering
i npl ementations of the priority inheritance protocol. [OBEN93]

In addition, work is underway to extend rate nonotonic analysis
to multiprocessor configurations. [JOSES6]

The reader should bear in mnd the issue of schedulability
as the discussion turns now to design approaches. The prine
objectives for hard real-time software are: 1) a fast response
to critical events, 2) a naxi mum nunber of tinmely transactions
per second, and 3) stability wunder transient | oads. The
secondary obj ectives of such sof tware i ncl ude: 1)
understandability, 2) naintainability, and 3) extendibility.
Determ nistic design approaches aim to ensure the primary
objectives at the cost of the secondary objectives. Concur rent
design approaches aim to maximze the secondary objectives,

while still enabling the primary objectives to be satisfied.

- 27 -

B. Determ ni stic Design Approaches

In general, determnistic design approaches require that
processing logic be divided into scheduling blocks that run to
conpletion every tine they are called. [FAUL88] Precedence
relationships and periodicity are then defined for the
scheduling blocks and a pre-run-tine scheduler produces a
schedul e that satisfies precedence and timng constraints. The
schedul i ng bl ocks are then distributed to programmers along wth
a maxi mum processing tine. Each programrer nust ensure that his
nodul e perfornms correctly and executes within the maxi mum tine
allotted. At run-tine, a cyclic executive nanages execution of
each scheduling block in accordance with the predeterm ned

schedule. As |long as each nodul e does not exceed its processing

budget, all deadlines will be satisfied. Deadl ock, starvation,
and |ivel ock cannot occur. Mut ual Iy exclusive access to shared
resources is guaranteed. O course, the software will not be

very adaptable to change. As functional requirenents are added,
the design cycle nust begin again because all of the nodules in
the design are tightly inter-rel ated.

While determnistic design approaches have been used to
develop real-time systens over the past three decades, no
rigorous, repeatable methods have been docunent ed. Sone
practicing designers enploy published techniques for structured
analysis and design, adapting them as necessary to neet the

uni que need of cyclic designs. The author can draw on his own

- 28 -

experiences designing air traffic control systenms to illustrate
determ ni stic design.

Design generally begins by examning periodic external
stimuli to determne what information arrives at the system and
how often. Then the required periodic outputs are studied to
detail the content and rate of output generation. Once the
periodic nature of the systemis understood, asynchronous inputs
are analyzed to determne how often they arrive and what
processing they require. Designers who use structured analysis
produce a system context diagram and a set of hierarchical data
fl ow di agranms to docunent the results of the analysis.

Design continues wth the layout of a comobn data
repository that all nodul es can access (nutual exclusion wll be
guaranteed by the cyclic executive). In general, the comon
data repository accunulates information received from externa
events and includes system configuration data needed to generate
output information. The general outline of the systemw | be
1) process periodic external inputs and update conmon data, 2)
generate periodic outputs, and 3) process asynchronous inputs.
The system is structured logically into the nodul es needed for
the particular application; a nodule ordering is established and
a schedule is produced to neet the timng constraints. Finally,
each nodule is allocated a piece of the available tine.
Designers who use structured design produce a data dictionary

and a nodul e hierarchy chart.

In summary, determnistic design approaches treat system
design as a process of allocating available CPU tinme anong the
system nodul es based on the synchronicity of the input events
and the update rate of the output events. Asynchronous events
are budgeted to have some anount of time within the system
cycl e, and therefore, the systems ability to handle
asynchronous events is bounded. Modul es operate on common data
and nmust live within a strict tine budget.

Determ nistic approaches to designing real-tinme systens,
al though practiced widely, nake little use of nodern software
engi neering techniques. Concurrent design approaches attenpt to
i ntroduce nodern software engi neering nethods into the design of
real -time systens.

C. Concurrent Design Approaches

In general, concurrent design approaches involve two
phases: 1) problem analysis and 2) architectural design. The
objective of the problem analysis phase is to understand the
structure, data, and behavior associated with an application.
In general, the results of problem analysis include: 1) data and
control flow diagrans, 2) state transition diagrans or tables,
3) dat a dictionaries, and 4) dat a transform logic
speci fications. The second phase, architectural design, uses
the products of the problem analysis to create a concurrent
design structured as a set of tasks and information hiding

nodul es. In sone cases, a concurrent design nethod also

- 30 -

I ncludes procedures to estimate a systenmis worst-case response
time to external events. In general, the results of concurrent

desi gn approaches are static structures, supported by task and
nodul e specifications, that becone dynamic only after the
I mpl ementation is coded.

A nunber of approaches to devel op concurrent designs can be
found in the Iliterature. [GOVA84, HULL91, KURK93, NI EL87,
NI EL90, RI DD80, SAND89a, SAND89b, SANDO3, W TT85, YAMA93] The
present paper discusses only a few of these.

Entity-Life Modeling (ELM as proposed by Sanden first
seeks to identify threads of events (called subjects) in the
probl em domain and then passive objects. The subjects are used

to nodel resource users and the objects are used to nodel

resour ces. The threads of events wll become tasks in the
design, while the passive objects will becone information hiding
nodul es. A major concern of ELM is ensuring nutual exclusion

when tasks access resources, while also preventing deadl ock when
multiple tasks are conpeting for access to the sanme set of
resour ces. In general, ELM objects are required to inplenent
their own nutual exclusion. When a subject needs sinultaneous
access to a set of resources, the designer nust define and
enforce resource acquisition rules so that tasks do not deadl ock
while acquiring resources. This approach in practice neans that
the designer nmust "[e]stablish a transitive, irreflexive

ordering of resources and permt the cunulative allocation of

- 31 -

resources only if the allocation conforns to the ordering."”
[WTT85, p. 68]

ELM provides a useful nodel for thinking about concurrent
design problens when a single processor is involved. ELM does
not, however, apply when a system is distributed. Thi s
restriction arises because ELM requires an execution environment
where threads of control share an address space. [SANDO3]

Gomaa has proposed a famly of nmethods for designing
concurrent and distributed systens. [GOVA84, GOVA89] These
nmet hods start with a problem analysis based either on real-tine
structure anal ysi s (RTSA) or concurrent, obj ect - based
requi renents analysis (COBRA). When a distributed system is
under consideration, Gomaa provides guidelines for logically
structuring a system into subsystens that can execute on
separate processors. After a subsystem is allocated to a
processor, design proceeds with a problem analysis, using RTSA
or COBRA, for each subsystem

Upon conpletion of the problem analysis, a designer wll
have produced a set of datal/control flow diagrans (with a state
transition diagram for each control transform and a process
specification for each data transforn) and a data dictionary.
Design continues by applying task structuring and cohesion
criteria to the data/control flow diagranms to produce a task
architecture diagram (TAD). Each task is also described through

a task behavior specification (TBS) that records that inputs and

- 32 -

outputs of the task, the priority of the task, the reason that
the task exists, a link to the control and data flow diagrans,
and a specification of the task’s control |ogic. Next, nodul e
structuring criteria are applied to the data/control flow
diagrans to identify the information hiding nodules in the
desi gn. For each nodule, a specification is witten describing
the type of nodul e, the nodule operations, and the
synchroni zation requirenments for the nodule. The information
hiding nodules are then allocated to tasks and a system
architecture diagram is produced. Gormaa al so provides sone
optional steps for napping the resulting design to the Ada
| anguage.
Ni el sen and Shumate describe a concurrent design approach
that ains at an Ada inplenentation from the begi nning. [N EL87]
Beginning with the sane context diagram that usually precedes
any software analysis, N elsen and Shumate imredi ately assign
tasks to control the devices identified on the context diagram
Next, N elsen and Shumate deconpose the mniddle part of the
system using standard data flow diagrans. From the data flow
di agranms, concurrent processes are identified using a set of
heuri sti cs. Then interprocess comunications nechanisns are
defined, followed by any internediary Ada tasks needed to
i npl ement decoupled inter-process nessages. (Ada tasks can

comuni cate only via rendezvous and thus internediary tasks are

needed when two applications task nust communi cate via
| oosel y- coupl ed nessages.)

Once tasks have been identified, N elsen and Shumate nove
I medi ately to package the tasks in Ada and then to specify
those packages using Ada as a program design |anguage. After
the Ada package specifications are witten, the N elsen and
Shumat e design nethods requires two design reviews, followed by
an update to the design docunents. Al t hough the N elsen and
Shumate nethod is not intended for distributed system design,
Ni el sen | ater explored sone of the issues involved in designing
di stributed systens. [N EL90]

While concurrent design approaches generally lead to
designs that are easy to understand, mmintain, and extend, sone
shortcom ngs can be identified. For one, typical design

approaches lack senmantic neaning prior to reaching the code

| evel . [KURK93] Al so, nost concurrent design approaches |ack
suppor t for timng anal ysi s, particul arly wher e t ask
synchroni zation is involved. These deficiencies |eave a

designer wunable to assess the dynamc behavior of proposed

desi gns.

V. Open Issues In Designing Distributed, Real-Tinme Systens

The preceding sections of this paper considered the
chal enges facing designers of distributed, real-tinme systens
and surveyed sone available approaches for designing such

- 34 -

systens. Conparing the challenges with the avail abl e approaches
reveal s that sone issues remain unresolved. In this section,
the nost «critical open issues are identified and briefly
expl ai ned.

One category of open issues results from the nature of
software requirenents docunents. The requirenments for nost
software systens, including real-tine systens, are expressed in
natural | anguage. I ndeed, for large systens, requirenments
specifications are wusually witten by a group of individuals,
each witing in their owm style about a particular aspect of the
sof tware requirenents. The use of natural |anguage by nultiple
authors results typically in a requirenents specification that
contai ns inconsistencies, anbiguities, and om ssions. For those
researchers addressing requirenents engineering topics, the open
challenge is to find effective nmethods to reduce, and elimnate
if possible, these defects from the software requirenents
speci fication. For researchers addressing software design,
however, the open challenge is to find nethods to detect and
resolve flaws contained in software requirenments specifications.
Software designed to neet flawed requirenments will not satisfy
the custoner, and the designer will be held responsible for
t hese failings.

A second open issue involving requirenents is particularly
germane to real-tinme systens. Avai | abl e net hods for specifying
software system timng requirenments are inadequate. |1n general
system timng obj ecti ves are treated as nonfuncti ona
requi renents, expressed in a probabilistic fashion using natural
| anguage. Such treatnent appears inappropriate for hard
real -tinme systens because certain timng objectives represent
deadlines that bound functionally correct behavior. A hard
real -time system that perforns all functions correctly can stil
fail if a single deadline is mssed. | mproved net hods nust be
found for describing deadlines and response tine requirenents

- 35 -

for hard real-tine systens. Should deadlines and response tines
be related to devices? Shoul d response tines be related to
scenarios of events that map an external input to an external
output? How should the system |oad be characterized? Should
the system |oad be expressed as the set of individual | oads
generated by external inputs? Should timng requirenents be
expressed as nmaxi mum response tines given a worst-case system
| oad? These are only sonme of the issues on which no agreenent
exi sts.

A second category of open issues for designers of real-tine
systens arises when the software is distributed throughout a
network of nodes. From anbng all of the special considerations
for distributed systens, as discussed in section Il of this
paper, two appear unavoi dable, yet difficult to resolve. First,
the properties of the comunication paths and protocols in a
distributed system introduce stochastic delays and residual
error probabilities into inter-task conmunications. Met hods
nmust be found to bound the maxi num conmuni cations delay and
residual error rate between nodes in a distributed, real-tine
system Wthout such nethods, a designer cannot possibly ensure
that task deadlines and response tinmes will be satisfied. The
best that can be achieved with current nethods is sone assurance
that, within the bounds of a known |oad, comunication delays

and residual errors will not exceed a specified value with sone
probability. Perhaps the only realistic means to address this
challenge will involve raising an exception when a required
delay or error rate is exceeded. This introduces the second

unavoi dabl e chall enge faced be designers of distributed systens:
choi ce of inter-task conmunication paradi gm

Designers of real-tinme systens are usually forced to adopt
the inter-task comunications conventions available with the
real -time executive or the |language run-time system used for the
i mpl ement ati on. In general, the available primtives will also

- 36 -

integrate external device interrupts into the conventions for

inter-task nessage exchange. Wen a system nust, however, be
distributed anong nultiple nodes, few, if any, real-tine
executives or | anguage run-tinme systenms provide native

mechani snms to handl e inter-node nessage exchange. The desi gner

then nust define nechanisns for inter-node nessage exchange and
nmust establish the relationships between these nechanisns and
the nmechanisms for |ocal nessage exchange. Further, the
desi gner mnust include these non-application functions within the
system design and then ensure that they are properly inplenented
for each type of node in the distributed system The open
chall enge for researchers s to renpbve this burden from
desi gners by devel oping an effective paradigm for distributed,

real -tinme, inter-task conmuni cations.

The third category of open issues for designers of
real -tinme systems stens from the static nature of design
docunent s. Most design nmethods result in diagranms and
supporting paper specifications that <clearly express the
structure of a design. Some automated tools even allow
consi stency checking anobng the various interrelated pieces of a
desi gn. Unfortunately, because nost design nethods lack a
formal semantics, dynamc evaluation of designs is wusually
post poned until system testing. Redesigning after flaws are
found during systemtests usually comes with a high price tag.

The chal l enge, then, for researchers is to devise nethods
to enabl e designs to be verified dynami cally before a systemis
i npl enent ed. Such nethods should enable designs to be checked
for safety properties -- absence of deadlock, [|ivelock,
unfairness, and failure, as well as presence of nutua
excl usion, proper synchronization, boundedness, and resource
conservati on. In addition, verification methods should enable
designers to assess resource utilization and to predict the
performance properties of the design. A neans should be

- 37 -

included to map the design onto various hardware and network
configurations and to assess the effects of these mappings on
system perfornmance and correctness. To be nost effective,
dynam c verification of designs should proceed directly fromthe
desi gn docunentation associated with a design nethod.

The reader can probably identify other open issues arising
from the material presented in sections Il and I1l, but the
author believes that the nobst critical challenges are those
outlined above: inproving the designer’s ability to specify and
anal yze requirenents, devising a nethod to bound the
uncertainties and to nask the conplexities associated wth
i nt er-node conmuni cations, and enabling designs to be verified
dynam cally before they are inplenented. To address these
chal enges, researchers are investigating a nunber of form
nmet hods and nodels, as well as related |anguages. Some of the
nore promnent formal nethods are considered in section V.
Section VI surveys a nunber of design |anguages based on fornal
nodel s. Section VIl exam nes several attenpts at constructing
design environnents that integrate conplenentary tools in an
effort to neet the chall enges facing software designers.

V. Formal Methods For Designers

Formal methods appear to prom se effective solutions to the
open issues that challenge designers of distributed, real-tine
syst ens. Formal rmethods enconpass nodels, typically supported
by a notation, that rest on a sound mathematical basis. [W N&O]

By encoding critical aspects of a systeminto a formal nodel or
description, designers can uncover anbiguity, inconpleteness,
and inconsistency in requirenents. Formal nethods, when
supported by appropriate tools, can also be used to verify
system desi gns.

Two general categories of formal nethods can be defined: 1)
behavioral methods and 2) structural nethods. [WN®O]
Behavioral nethods allow a designer to describe formally the
i ntended behavior of a system and then to investigate various
properties that the system will exhibit during operation. For
designers of concurrent systens, behavioral nethods address
i ssues of task sequencing, synchronization, nmutual exclusion,
and, with sone nethods, task timng and perfornance. Sone
exanpl es of behavioral nethods (covered below) include finite
state automata, Petri nets, tenporal ordering, and nodeling and
si mul ati on.

Structural nethods enable designers to express fornmally the
properties that a correctly behaving systemw Il exhibit and, in
some cases, to provide proofs that an underlying inplenmentation
will exhibit the expressed properties. Structural nethods allow
designers to specify invariants for information hiding nodules,
as well as preconditions and post-conditions for each nodule
oper ation. Wth some nethods, a designer can even specify the
Invariants and pre and post-conditions for procedural code.
Sonme exanples of structural nethods (covered below) include
tenporal l|ogic, axiomatic nethods, and abstract data types. In
general, structural nethods have proven |abor intensive, have
yielded inefficient proofs, and have been difficult for the
average software designer to master. [HOAR37]

The paragraphs that follow exanmne, one by one, sone
prom sing formal nethods. Behavi oral nethods are considered
first, followed by structural nethods.

A Finite State Autonata

Finite State Automata (FSA), also called Finite State
Machi nes (FSMs), represent system behavior as a set of states.
A FSA can be in only one state at a given nonent, but can change
states in response to external events. Such a nodel enables a
system to order its behavior in the face of random asynchronous

- 39 -

events that nmay arrive from many sources. Pure FSA, in nost
practical applications, require a large nunber of states to

T1 Authorize Transaction
Open T2 Complete Transaction
T3 Reject Transaction
Close T4 Establish Transaction
E1 Enable Dispense Gas
D1 Disable Dispense Gas
Closed Opened
'3
Cash Not Not Credit Card
Cash Card (Okay Authorized | Inserted
Inserted T3 Tl
T1
Waiting
L J -
Authorization
Close Cash Okay
T3 [Switch is not On]
Authorized
[Switch is not On]
T4 | Stopped
T2
Authorized
Close
T3
Cash Okay
[Switch is On]
Stopped
oppe E1
T2 Switch On P
Authorized Wagmg On
E1 [Switch is On] one
Waiting On v T4, E1
Stopped - -
Dispensing Stopped
T2
Close Switch Off
D1 D1

Figure V-1. Exanple Finite State Automata

properly describe a systemis response to external events. To
reduce this state-explosion problem nust useful FSA nodels have
been augnented to include predicates that guard the activation
of transitions between states based on historical information

that is retained in state history variables. Per haps these
points wll becone clear through considering an exanple. An
exanple can also illustrate the graphical notation, called state

transition diagrans, typically used to represent FSA.

- 40 -

Figure V-1 shows a state transition diagram representing
the FSA for an autonated gas punp. Each rectangle enclosing a
| abel represents the state named by the | abel. The set of
states in the exanmple 1is: (Opened, Wiiting Authorization,
Aut hori zed, Dispensing, Witing On Done, Witing On Stopped,
Cl osed) Transitions between states are shown as directed arcs
with the arrow head pointing to the new state and away from the
old state. A single arc without an old state identifies the
initial state of the FSA (Opened in the exanple). Each
transition is triggered by the arrival of an event. The set of
events in the exanple is: (Open, Cose, Cash Not ay, Not
Aut hori zed, Credit Card Inserted, Cash Card Inserted, Cash Ckay,
Aut horized, Switch On, Switch Of, Stopped). Each transition
can have an associated set of actions that are considered to
occur instantaneously as the transition fires. In the exanpl e,
the set of actions is given in a box within the figure. Each
action has a short label (e.g., T1, Dl1) and a descriptive nanme
(e.g., Authorize Transaction, Disable Gas Dispenser). Al so
shown are exanples of predicates that guard a transition. In
Figure V-1, predicates are bounded within square brackets (e.g.,
[Switch is On]). Consider the state Wiiting Authorization.
Wen the Cash Okay event arrives, two transitions are
potentially enabled: one transition noves the FSA to the state
Aut horized and is guarded by the predicate [Switch is not On]
and the other transition noves the FSA to the state D spensing
and is guarded by the predicate [Switch is On].

FSA, described wth state transition diagrans, are
typically used to prescribe an acceptable sequential order in
which arriving external events can be processed. Wiile state
transition diagrans are nost convenient for human conprehension,
other fornms of FSA representation are better suited to nachine
processi ng. Conmonl y used encodi ngs i ncl ude: nest ed,
st at e- X- event, case statenents in high-1level pr ogr anmm ng

- 41 -

| anguages and state-X-event tables that drive an FSM
interpreter. [KUUL91] Some high-1evel | anguages have been
nodified to include constructs that directly represent FSMs.
[1 SO92]

Once an FSA is described in a machine-processable form
event-state-transition tracing tools can be used to verify that
the FSA captures the desired behavior; however, when extensive
use is made of predicates, the FSA nust be translated into an
FSA that is predicate-free prior to applying the tracing tools.
The resulting FSA may explode into hundreds of thousands of
states and, thus, prove conputationally difficult to verify.
For exanple, extended finite state machines are sonetinmes used
to specify the allowable behaviors in telecomunications
systens, and then automated tools are applied to generate
scenarios for system tests. [CAN35] In these cases, hunan
intervention is required to elimnate the generation of
duplicate tests and to prune the resulting test set to an
accept abl e si ze.

FSA enabl e concise specification of allowable sequences of
behavior in a form that is conprehensible to humans, yet that
can be translated straightforwardly into a machine-processible

encodi ng. Al of the described behavior is sequential and
applies to a flat, single task. No provision exists for
describing timng nor concurrency anobng events. These

shortcom ngs were addressed by researchers through a set of
extensions to FSMs that were proposed gradually over two or
t hree decades.

A first extension involved using multiple, comunicating
finite state machines to nodel interactions between cooperating
sequential tasks. This enabled concurrent tasks and task
synchroni zati on to be nodel ed si mply and efficiently.
Inter-task conmunications were then represented as asynchronous
events exchanged between FSMs. Events arriving at a FSM were

- 42 -

sinply deposited into a FIFO queue and then processed
one-at-a-tine. A second extension allowed each state in a FSA
to be nodeled with a nested FSA I nt roduci ng hierarchies of
FSMs assisted designers in managing conplexity by allow ng |arge
systens to be represented as conpositions of sinple FSMs, rather
than as a single, huge FSM Conbining the first two extensions
permtted intrastate concurrency to be nodeled by allow ng
multiple FSMs to execute under that control of a parent FSM t hat
was itself enbedded in the state of its own parent. As the
nunber of cooperating FSMs to be nodeled increased, the
difficulties of communication and synchronization between them
i ncreased as wel | .

To harness the many extensions to FSMs and to introduce
sone discipline into inter-FSM communications, a nunber of
formal nodels were devel oped during the 1980's. One such nodel
Extended State Transition Language (Estelle) becane an
i nternational standard for describing comrunication protocols
and distributed systens. [IS02] This nodel will be considered
in sonme detail in section VI when design |anguages are
considered. For now, Estelle can be understood as a nodel based
on conmunicating, finite state machines which exchange events
asynchronously t hr ough uni di recti onal channel s. The
comuni cating FSMs can operate as peers or in a parent-child
rel ati onship. Using the Estelle nodel, a nunber of inter-task
arrangenents can be represented and then exercised through a
run-time environnent.

Anot her nodel , Communicating Real-Tine State Machines
(CRSM, provides a conplete, executable notation for specifying

real -time systens. [SHAVW2] Event exchange between state
machines is nodeled as synchronous comunication across
unidirectional channels (along the lines of CSP, a |anguage
described in section VI). CRSM al so includes a novel set of
facilities for describing timng properties. Each transition

- 43 -

action has an execution or synchronization tine associated with
it. Each FSMis augnented by a real-tinme clock machi ne that has
access to a global tine source. An underlying operational
semantics for executing a CRSM system manages the firing of
transitions and the nodeling of the tinme intervals. CSRM does
not permt shared data. Al though CSRM is one of the few FSA
nodels to include time, there are no facilities for structuring
a system of FSMs into higher level entities (a strength, for
exanple of Estelle) or for nodeling interrupts (a common
shortcom ng wth FSMs because each transition is atomc).

Anot her advanced nodel based on FSA, called statecharts,
was invented by Harel in the 1980's. [COLE92 , HARE87, HARE90]
Statecharts define a formal semantics for an advanced version of
extended FSA The advanced capabilities include hierarchical
nesting of FSA within individual states, concurrent execution of
multiple state machines within a single state, and broadcast
comuni cation of events so that any event output froman FSM in
a statechart will be imediately visible to every other FSM in
the same statechart (and external events arriving into a

statechart are also visible to all FSMs in the statechart).
Statecharts al so allow for non-determ nism and timed
transitions. Statecharts appear overly rich in features and

semantics, nmaking them difficult for a designer to use and to
under st and. To overcone sone of these difficulties, Harel has
proposed a set of tools called Statemate.

Statenate enables a designer to graphically specify,
anal yze and design large, conplex, reactive systens. [HARE9OQ]
Al t hough the notation is graphical, the syntax and semantics are

formal . A Statenmate system description conprises three views:
structure, function, and behavior. Each view can be expressed
with a separate graphical |anguage. The behavi or |anguage is

statecharts. [HARE87] The system structure is described as a
hi erarchi cal deconposition of nodules and the information flows

- 44 -

bet ween them The structure |anguage is called nodul echarts.
The functi onal view is dr awn, in a language called
activitycharts, as a set of data flow diagrans. From the
conbi ned descriptions of a system Statemate can sinulate the
systeni s behavior or generate code to inplenent the system The
simulator can be used to evaluate reachability, to identify
non-determ nism to detect deadlocks, and to profile transition
usage. The testing performed is truly a sinmulation and so a
designer can find errors but cannot prove the absence of errors.
Using Statemate for exhaustive testing is not feasible for nost
real designs.

Statenate appears to provide a sinulation capability to
support a real-time structured analysis view of system design,
but with a nore powerful representation of control transforns.
Some recent research aims to couple statecharts wth
object-oriented concepts in order to marry the behavi or nodeling
capabilities of statecharts wth the information nodeling
concepts of object-oriented design. The result is called
Obj ectcharts. [COLE92]

bj ectcharts are an extended form of statechart that
characterize the behavior of a class as a finite state machine.
The design nodel in which objectcharts are enbedded consists of
a configuration diagram (describing every object in a system by
its required and provided services) and an objectchart that is
simlar to the object notation used by Runbaugh, Booch, or Coad.
The innovation of objectcharts is to use statecharts to
represent object services that change the state of an object.
Services that do not change an object’s state are not described

with statecharts. System behaviors can be generated by
conmbi ning individual object behaviors. bj ects communi cat e
using infinite, FIFO queues to hold incomng events. The

behavi or of each object can be specified using a trace of
incom ng events and resulting output events. Included in the

- 45 -

system nodel is an intuitive definition of subtyping for
obj ectcharts, i.e., descendant classes may be specialized by:
1) adding a state/transition that corresponds to a new service,
2) strengthening the guard for a transition, and 3)
strengthening the invariant for an object.

From this description of the nature of FSA and sonme recent
research advances and supporting tools, the reader should cone
away with a nunber of inpressions. First, FSA can be used to
represent cooperating tasks by describing each task wth one
FSA. Second, FSA do not generally include the notion of tine.
Third, extended features such as guarded transitions and
hi erarchi cal nesting of FSA enable a designer to better deal
with conplexity; however, when such extended FSA are expanded
and flattened to facilitate machine analysis, state explosion
can meke conputational verification infeasible. Fourth, no
agr eenent exists anobng researchers as to how inter-FSA
comuni cati on should be nodel ed. Fifth, inter-FSA concurrency
can be nodel ed, but the synchronization between concurrent FSA
depends to a large extent on the specific nodel wused for
i nter-FSA communi cati on. Si xth, researchers are just beginning
to investigate nmeans for integrating FSA into object-oriented
desi gn nodel s.

Anot her formal tool for nodeling behavior includes FSA as a
subset . This tool, called Petri nets after its inventor, Carl
Petri, is discussed next.

B. Petri nets

Petri nets can be used to nodel finite state machines, as
wel | as concurrent activities, dat af | ow conput at i on,
comuni cations protocols, synchronization control, and, i f
inhibitor arcs are allowed in the Petri net (PN), producer-
consunmer systens with priority. [MJRA39] A major strength of
PNs is their support, when conputer-assisted tools are used, for

- — - boundary
- sales slug T~
prod changes _ ~ o /

S
~
N
N . ord
cred not avail AN ré). order
update |
sales log |

sales !

1
update order2 ‘ !
catalog prep. rej. ‘
order
¢ ‘ back order

atalog
heck prep. batk
creditl inven. not order | | ‘
avail. ‘
N sales
~ 2‘:@5 rderl
orde \

check check
credit2 prep. app. order | inventory 1 y
app. order
order request
check »
inventory 2 |
|

|

cred. avail \
AN : prep. é?cc.
inv.
N - e acc. order

N avail. orger,

N

N
N

See Figure V-3. For
ested Petri net

Figure V-2. Petri net Mddel OF An Order Processing System
[SAKT92, p. 226]

analysis of many properties and problens associated wth
concurrent systens.

PNs can be viewed as a 6-tuple, such that N =(P, T, E, M,
K, W, where P is the set of places, T the set of transitions, E
the set of arcs, M the initial token marking, K the capacity
function, and W the weighting function. [MJRA84] P and T are
di sjoint. M(p) yields the nunber of tokens initially at place
p. K(p) yields the token capacity of place p. We) yields the
nunber of tokens transmtted along arc e. In a so-called
ordinary PN all arcs have a weight of one. 1In an ordinary PN, a
transition is eligible to fire when a token is present at each
of the transition’s input places. Firing a transition results
in noving a token from each of the fired transition s input
pl aces

and placing a token in each output place associated with the
transition. \Wenever nultiple transitions are eligible to fire,
one is selected non-determnistically. (Note that firing rules
are different for various fornms of PNs.)

PNs can be represented in a graphical form that enables a
human being to visualize the behavior represented by the net. A
si zabl e exanple of a graphic PN is given in Figure V-2 where the
control behavior of a generic order processing system is
i1l ustrated. In Figure V-2, the dashed line represents the
boundary between the order processing system and its

environnment. The system has
two external i nputs, the
pl aces prod. changes and

order request, and three

sales order 11
external outputs, the places

find credit
limit

rej. order, back order, and | initiate

sales orederl | credit cheék
|

Figure V-2 represents sone

credit avail.

acc. order. Each place in

the order processing PN of e

check tredit

availability
|

system dat a and each

sales order 12 compute order
value

transition represents sone| o "7

system function. The

initial marking of the PN Figure V-3. Nested Petri net for
Check Credit 2 [SAKT92, p. 226]

probably includes tokens in
the places catal og and sal es
log, as these are permanent data repositories associated wth
t he order processing system
When a token arrives at prod. changes the update catal og
transition fires, returning a token to the catalog. Note that a
token could also arrive at order request, enabling the
transition pre. sales order. Should a token arrive

simul t aneously at both prod changes and order request, one of the

- 48 -

two transitions would be selected to fire and then the other.
Thi s arrangenent of transitions represents nutual exclusion
bet ween the functions
update catalog and pre. sales order. When pre. sales order
fires, a token is renmoved from the places catalog and order
request and tokens are entered at the places sales order2, sales
order1, and catal og.
The existence of both places sales order2 and sal es orderl
represent the fact that when an order request is received two
actions can take place concurrently: the sales log can be

Table V-1. dCassifications of Ordinary Petri nets

O dinary PN Al'l arcs are of weight one.

St at e Machi ne Ordi nary PN where each transition has
exactly one input place and one out put
pl ace.

Mar ked G aph O di nary PN where each place has exactly
one input transition and one out put
transition.

Free- Choi ce Net |[Odinary PN where every arc froma pl ace
is either a unique outgoing arc or a
uni que incomng arc to a transition.

Ext ended Free- |Wien two sets of places Pl and P2

Choi ce Net intersect, the inplication is that P1 =
P2.

Asymetri c- When two sets of places Pl and P2

Choi ce Net intersect, the inplicationis that P1 is a

proper subset of P2 or P2 is a proper
subset of PI1.

updated and the order can be processed. (In PNs, two arcs
| eaving a transition denote parallelism)

Consi der now what occurs in Figure V-2 when a token arrives
at sales orderl. Here, two arcs |leave the place. In PNs, this
represents a decision because only one of the two transitions

- 49 -

Tabl e V-2.

Petri net Analysis Properties

Reachability

Can all token markings be reached?

Are the nunber of tokens in each place

Boundedness finite?
. WIIl at |east one transition always be
Li veness enabl ed?

Reversibility

For every possible marking, can the initial

mar ki ng be reached?

Coverability

Can all potential markings by reached?

Per si st ence

For every transition, does the firing of
the transition disable another transition?

Synchroni c

A neasure of how often the firing of one

Di stance transition is related to the firing of
anot her .

. A neasure of how often transitions get to
Fairness fire relative to other transitions.
St ruct ur al Does there exist a live initial marking?
Li veness
Control - Can any marking be reached from any ot her
lability mar ki ng?
St ruct ur al Is the net bounded for any finite initial
Boundedness mar ki ng?

Conservati ve-
ness

Are all initial tokens conserved?

Repetitiveness

Is there an initial marking such that every
(or sone specific) transition occurs
infinitely often in a firing sequence?

Consi st ency

Is there a firing sequence such that every
(or sone specific) transition occurs at
| east once?

can fire, and when one does the other will be disabled. The two
arcs |leaving sales orderl represent the cases where: 1) a
custonmer has insufficient credit and thus the order is rejected

and 2) a customer has sufficient credit and thus the order can
be further processed.

Anot her feature of PNs is illustrated in Figure V-2 at the
transition check credit?2. Here a transition is represented by
another PN in a hierarchical fashion. The PN that substitutes
it2 is shown, bounded by a dashed rectangle, in Figure V-3.
Here a credit file possesses a permanent token. Upon entering
the transition, tw parallel paths are taken: one finds the
custoner’s credit [|imt and the other determnes the order
val ue. Before leaving the nested transition, the credit limt
and order for check cred value are synchronized as inputs to the
transition check credit availability.

Returning to the large PN of Figure V-2, the reader should
note that, though the two paths out of sales orderl are nutually
exclusive, no information exists at place sales orderl to enable
the appropriate path to be determ ned. This should rem nd the
reader that PNs allow the representation of valid behaviors, but
do not specify what conditions will cause which of the valid
behaviors to occur.

O dinary Petri nets can be restricted to limt the range of
systens that can be nodel ed. A summary of the classes of
restricted PNs as related to ordinary PNs is shown in Table V-1.
State machines allow no concurrency nor synchronization to be

repr esent ed. Mar ked graphs cannot depict choice because they
allow no conflicts between enabled transitions. Free-choi ce
nets cannot show confusion (i.e., a mx of conflict and
concurrency). Asymmetric choice nets allow an asymetric

confusion, but disallow symetric confusion.
PNs can be subjected to a nunber of analyses as indicated
in Table V-2. [MJRAB9] To investigate the properties listed in

Table V-2, three analysis nethods are generally used. One
common method involves generating a coverability tree. When a
PN is unbounded, its associated coverability tree will becone

- 51 -

pl

HEAD(ji)=e1;

FREE(<jk, ek>)=
ek;

TAIL(ji)=en;

EMPTY (<ji, ek>)=
ek-1;

J

2

Q 3

MOVE(<ji, ek>
<ji, ek-1>;

)

ID(<ji, ek>)=
<ji, en>

PUT(ji)=

<ji.en>: GET(ji)=<ji,en>;

p2

Figure V-4. High Level Petri net Depicting A FCFS Job
Queue [DOTA91, p. 500]

infinitely large. To prevent this infinite path expl osion, nost
analysis nethods introduce a synbol to represent infinite
behavior and then curtail each branch of the coverability tree
once an infinite behavior is recognized. A second analysis
techni que represents PNs as an incidence matrix, coupled with a
set of state equations. This technique is somewhat |imted due
to the non-determnistic nature of PNs. A third analysis nethod
represents a PN as a set of sinple reduction rules, a |ess

conpl ex abstraction that still captures the behavior encoded in
the PN. All of these analysis nmethods are limted by the
natural conplexity inherent in PNs. A "...major weakness of
Petri nets is the conplexity problem i.e., Petri-net-based

nodels then to becone too large for analysis even for a
nodest-si ze system " [MJRA89, p. 542.] In addition, graphica
PN nodels usually prove inconvenient when used to specify the
behavi or of |arge systens. To overconme this inconvenience, a
class of nets called H gh Level Petri nets have been proposed by
several researchers.

High Level Petri nets (HLPNs) raise the abstraction power
of PNs by attaching semantic distinctions to tokens (for
exanple, giving them types, sonetinmes called colors) and by
associating predicates with incomng and outgoing transition
arcs that allow typed tokens to be manipul ated when a transition
fires. HLPNs may be called predicate/transition nets or col ored
PNs depending upon the exact nature of the extensions. An
exanple of a colored PN, shown in Figure V-4, can illustrate
some of the concepts involved.

In Figure V-4, places represent free slots (pl) or full
slots (p2) in a job queue. Transitions depict adding a job to
the queue (tl1l), advancing a job one place ahead in the queue

(t2), or renoving a job from the queue (t3). Tokens cone in
four colors: E = {ek | kK =1,2,...,n}, where ek indicates that
the kth place in the queue is enpty; J = {ji | i =1,2,...,p},
the set of jobs; Q = {<ji, ek> | i =1,2,...,p; k = 2,...n}

where a token of <ji, ek> indicates that job i occupies slot k
in the queue; S = {<ji, el> | i = 1,2,...,p}, wiere job i
occupies the first slot in the queue. The initial nmarking of

the HLPN finds no tokens in p2 and n tokens (one for each col or
el...en) in pl.

Transition tl is enabled if pl contains a token that
satisfies the predicate TAIL(ji)= en (i.e., the last slot in the

queue is enpty). Wien tl1 fires, a token of color en is renoved
from pl and a token of color <ji, en> (PUT(ji) = <ji, en>) is
put at p2. Transition t2 depicts the novenent of jobs in the

gueue. \Wen a slot becones enpty, t2 fires, freeing slot ek and
noving job ji to slot ek-1. Transition t3 fires to renove a job
fromthe queue.

Wen the nunber of colors is finite, a HLPN can be
considered to consist of a structurally folded version of a
regular PN. This ability to transform HLPNs into ordinary form
is crucial to the analysis of the net because HLPNs cannot be

- B3 -

subjected to the same analytical nethods as ordinary PNs.
[PAPE92] The reader should notice, from reviewing Figure V-4,
t hat, while possessing a useful | evel of specification
conveni ence, HLPNs sacrifice some of the visual power of
ordinary PNs. [PAPE92] Anot her shortcomng of HLPNs, a
shortcom ng shared with ordinary PNs, is an inability to nodel
tinme. Several researchers investigate nethods for representing
time in PNs.

Two basic approaches exist for including time into PN
nodels: 1) timed PNs and 2) tine PNs. [BERT91] Timed PNs

associate a firing duration with each transition. Time PNs
allow two nunbers, (a, b), to be associated wth each
transition, where a, (a >= 0), is the mninmum time that nust
el apse from when a transition is enabled until is fires and b,

(0O <= b <= infinity), denotes the maxinmum tine during which a
transition can be enabled wthout being fired. Time PNs are
nore general than tinmed PNs and, thus, nost researchers work
with time PNs. [BALB92, BERT91, GHEZ91, YA(B9]' In general, time
Is used in PNs in two ways. One way depicts time delays as
determnistic values and the other way, so-called stochastic PNs
(SPNs), depicts time delays as probabilistic val ues. SPNs can
be nmapped into Markov chains. [MJRA89] SPNs have been extended
to a class of generalized SPNs (GSPNs) to manage the state space
explosion that occurs with conplex PNs. [BALB92, MJRA89] The
specific approach used wll depend upon the performance
properties of interest to the anal yst.

! Note that other |esser used approaches to adding tine to
PNs al so exist. [GHEZ91l] For exanple, an idle tine value can be
attached to each place, requiring that input tokens becone
available only after the idle tine has passed. As another
exanpl e, clock nechani snms can nodel ed by neans of
predi cate/transition PNs. These are not described in the
present paper, and the reader should rest assured that not every
extant variation of PNs, tined or otherwi se, is covered here.

- 54 -

Deterministic tined PNs are used to estimate the mninmm
time needed for each mmjor path or cycle through a system
[YAGB9] To apply this approach, the analyst nust first devel op
a PN nodel from a detailed statenent of the system logic. Then
the PN nust be reduced to only the places and transitions
affecting the performance of the system The reduced PN rmust
then be organized into the nmmjor control cycles of the system
Once specification, reduction, and organization are conplete,
time PNs can yield estimates for the best- and worst-case cycle
time for the system \Wen applying these techni ques, Yao found
that automatic and sem automatic tools nust be developed to aid
in the analysis of large systens because PNs do not scale up
wel | . [YA089]

Berthomeu and D az have proposed using enunerative
anal ysis to sinultaneously nodel behavior and anal yze properties
of time PNs. [BERT91] Unfortunately, they have encountered sone
of the sanme I|imtations cited by Yao. "As enunerative
approaches for analyzing Petri nets can produce |arge sets of
cl asses, even when the net is bounded, Petri net experts mnust be
able to create nets with manageabl e nunbers of classes when this
can be done." [BERT91, p. 271] Berthom eu and Diaz al so point
out that reachability and boundedness deternmination for tine PNs
are undecidable. One other limtation of their approach is that
firing transitions takes no tine to conplete, and so if the
firing time is inportant, then it nust be included in the tine
| abel for at least one tined transition. This adjustment tends
to obscure the natural representation of the system tinmng
nodel .

Wiile determnistic time PNs have been used with sone
success, stochastic PNs are nore controversial. [MJRA89]
Acceptance of GSPNs is |limted by the difficulty in constructing
appropriate nodels and by the conplexity inherent in the
solution of the nodels. [CH 093] Bal bo, et al., illustrate how

- B5 -

col ored, generalized SPNs (CGSPNs) can be used to study both the
correctness and performance of a system [BALB92] They apply
CGSPNs to study Lanport’s concurrent algorithm for providing
mutual exclusion on CPUs that |ack an atomc test-and-set
I nstruction. They discovered several areas that need further
i nvesti gation. For exanple, a PN nodel may be too conplex to
anal yze exactly for large nunbers of basic colors. Further, the
| abor involved in nmapping a problemto a colored PN and then to
a GSPN is too great and too error prone; thus, they advocate
I nvestigation of tools for automatic generation of a CPN from a
system specification and also further research regarding
formal i zati on of techniques for deriving correctness proofs.
Chiola, et al., also investigate how PNs mi ght be used to
anal yze both behavi or and performance, but their approach begins
with a GSPN and then attenpts to derive sone behavioral PNs by
elimnating timng fromthe GSPN nodel. [CH 3] The novelty of
their approach is based on their claim to have obtained the
first structural analysis of PNs wth both priorities and

I nhi bitor arcs. They also identify sone problens inherent in
PNs, generally, and GSPNs specifically. For one, real system
nodels result in graphically conplex PNs. For another, the

conplexity of GSPN nodels of real systens appears too great to
all ow feasible nodeling at a reasonabl e cost.

Perhaps the nobst anbitious attenpt to integrate the
behavioral, functional, and tine representation in PNs is
reported by Chezzi, et al. [GHEZ91] Ghezzi i nt roduces
environnment/rel ationship nets (ERnets), HLPNs that can be used
to specify control, function, and tine. The main idea behind
ERnets defines tokens as environnents that are really functions
associating values to variabl es. An action is associated wth
each transition. Each action can also describe the input
environnments required by the transition and the output
environnments produced. Time is introduced to ERnets by

- 56 -

including a tinestanp with each environnent. \Wenever an action
is invoked (by firing a transition), the action nust produce a
value for the tinmestanp associated with the output environment.
Three sinple rules nust be observed for producing the new
ti mest anps: 1) the output tinestanp nust exceed the tinestanps
of the input environnment, 2) each output environnment produced by
the same transition firing will have the same tinmestanp, and 3)
transition firings in sequences nust produce nonotonically
non- decreasi ng ti mestanps.

From the basic tinme rules introduced into ERnets a nunber
of PNs with tine added can be nodel ed. The nost basic net,
called Tinmed ERnets (TERnets), enforces a weak tinme nodel where
enabl ed transitions are not required to fire. A variant, called
Strong TERnets (STERnets), requires that an enabled transition
must fire within its due tine (i.e., no other firing can disable
a transition). Anot her variant, called TBnets, represents a
particular case of TERnets, but where only tokens (not
environnents) are tined. TBnets are introduced so that Ghezzi
can show how existing approaches to adding tinme to PNs can be
nodeled with TBnets (and thus that his work represents a
superset of all other approaches).

Wi | e Ghezzi’s approach provi des some remar kabl e
integration and extension of existing PN nodels, the reader
shoul d already suspect that sone drawbacks exist. For one, the
main analysis aid is a tool for executing ERnet specifications.
Wth such a tool, problens can be detected, but the absence of
probl ens cannot be proven. Ghezzi shows that proving the
properties of ERnets is undecidable. He does point out that, by
i gnoring tokens, standard PN anal ysis techniques can be applied
to give an approxi mate anal ysi s.

The reader wll have noted that Ghezzi, and many of the
researchers and practitioners discussed above, cite the need for
aut omat ed assi st ance. For conpl ex PNs, exhaustive analysis, in

- 57 -

order to establish the existence of specific properties, is
often deened conputationally infeasible. For that reason, nuch
of the practical research regarding PN tools ainms at nethods for
creating PN nodels and then for exercising those nodels to
detect errors or to characterize performance. In the follow ng
par agr aphs, sonme of this research is reviewed.

One interesting tool, the Expert System based PN Sinul ator
(ESPNET), takes a tined PN as input and produces a sinulator (in
the OPS5 |anguage) as output. [DUGE8] The PN can then be
exerci sed. ESPNET, positioned as a pre-sinmulation tool, has
been applied to generate rapid prototypes of flexible
manuf act uri ng systens.

Anot her approach allows a user to specify a system of
hi erarchical, colored PNs, to indicate the commands to and
events from outside the system and to describe guards on arcs
flowwng into transitions. [MCO0] Then, using a TOol for RApid
prototyping (TORA), the user can exercise his system
speci ficati on. TORA consists of three subsystens: 1) an
interpreter of colored PNs, 2) a hierarchical user interface,
and 3) a flexible nmanufacturing system environnment to sinmulate
the systenis external world. TORA permts parallelism to be
represented visually, and enables a specification to be
mani pul ated synbolically. Al'l communi cation between PNs, and
between PNs and the environnment, are nodeled asynchronously.
TORA is another tool that enables a PN to be exercised, rather
t han anal yzed.

Anot her approach applies hierarchical PNs to animte data
flow diagranms (DFD). [LAUS89] Here, each |eaf node of a given
DFD is treated as a PN. Then, as required, termnators in one
PN are nmapped to initiators of another PN. The outside world is
al so mapped to appropriate initiators and the DFD s termni nations
are mapped to the outside world. Using this approach, PNs
enable a DFD to be exerci sed.

PNs are often inplenented using some form of Prolog.
Recent research shows that flat concurrent Prolog (FCP) can be
used to execute directly HLPNs. [DOTA91] FCP can al so be used
to sinmulate hierarchical systens of PNs and to describe and
sinmulate tined PNs. These nodels can also be integrated. Since
all PNs that are represented with FCP are guaranteed to be
finite, some analysis can be performed on such PNs. Achievable
anal yses include: 1) |oop-free-ness, 2) decision-free-ness, 3)
consi stency, and 4) determning whether a PN is synchronous or
asynchronous. In addition, dynam c execution of an FCP PN can
assess: 1) reachability, 2) anbiguity, 3) boundedness, 4)
resource conservation, 5) conflicts, and 6) |iveness. Al t hough
t hese anal yses are desirable, FCP sinulation of conplex PNs is
not yet feasible because the execution performance of concurrent
| ogi ¢ prograns i s poor.

A different approach to specification and analysis of PNs
is taken by WIIlson and Krogh. [WLL90] Their goal is to enable
a user to specify a systenis behavior, to generate nodels from
that specification, and to conduct an efficient and neaningful
anal ysis of the properties of the specification. They describe
a rul e-based specification | anguage consisting of discrete state
vari ables and state transition rules. They generate, from the
specification |anguage, PN nodels, represented in incidence
matrix form that include timng and stochastic selection
choi ces. They support analysis with a tool that allows a user
to specify a submarking of the PN that is of interest and then
to perform a reduced reachability analysis. This approach
attenpts to enable exhaustive analysis by allowing the user to
speci fy those behaviors that are critical.

Some recent work attenpts to marry PNs and sinulation
nodels. Tagi, et al., illustrate techniques for converting SLAM
(Sinmul ation Language for Alternative Mdeling) nodels to PNs and
vice versa. [TAQ 92] These techniques aimat two objectives: 1)

- 5o -

provi ding an autonated neans of analyzing PNs and 2) devising a
nmethod to pictorially represent conplex SLAM nodels. To
acconplish objective one, PN nodels are translated into SLAM
nodes for create, queue, activity, and term nate functions. To
acconplish objective two, PNs conposed of a very restricted set
of representations can be napped to their corresponding SLAM
nodes.

A simlar approach is reported by Sakthivel and Agrawal,
but for GPSS (Ceneral Purpose Sinulation System) nodels.
[SAKT92] Here, the simulation blocks permtted include
generate, termnate, and seize. In addition, the translation is
only one-way, fromPN to GPSS.

To close the discussion of Petri net nodels, the strength’s
and weaknesses of PNs are recapitul ated. The very general
nature of PNs is a mmjor source of strength and weakness. PNs
are based on a strong nathematical footing that enables a range

of anal yses. PNs can also

represent many system

behavi or s, I ncl udi ng pout Ain
concurrency, synchroni zat i on,

non- det erm ni sm timng, and

function. Unfortunately, PNs Bin Bout
ent ai | subst anti al conpl exity

when representing conpl ex Figure V-5. A Simplex-Duplex Bufer

syst ens. And, when conpl ex

systens are nodeled, the analyses that are theoretically
possible with PNs becone conputationally infeasible. Conpl ex
PNs al so weaken the graphical clarity that normally attends a PN
nodel. To enable PNs to increase their expressive power, and to
incorporate time, nany different approaches are proposed by
researchers. This results in difficulties for practitioners who
wish to apply PNs to specific problens. No particular PN
extension is better necessarily than another, and thus a

- 60 -

practitioner nust carefully consider the purpose of his nodeling
agai nst the capabilities of various proposed PN extensions and
al so against the set of tools available to assist in analyzing
or exercising PNs that incorporate extensions. Al t hough
invented in 1962, PNs remain immture as a neans of specifying
syst em behavi or.

C. Tenporal Odering

Tenporal ordering describes a behavior by specifying valid
sequences of actions that occur in response to external events.
[1SOC87] This form of specifying behavior has its roots in
M I ner’s cal culus of conmunicating systens (CCS). Behaviors can
involve choice (both determnistic and non-determnistic)

process sinpl ex-dupl ex-buffer[in-a, in-b, out-a, out-Db]
in-a; (in-b; (out-a; out-b; stop
[] out-b; out-a; stop)
[] out-a; in-b; out-b; stop)
[T in-b; (in-a; (out-b; out-a; stop
[] out-a; out-b; stop)
[] out-b; in-a; out-a; stop)
end process

(a) Tenporal Odering Using Choice O Sequences

process sinpl ex-dupl ex-buffer[in-a, in-b, out-a, out-Db]
one_tinme_buffer[in-a, out-a]
||| one_time_buffer[in-b, out-Db]
wher e
process one_tinme_buffer[in, out] :=
in; out; stop
end process
end process

(b) Tenporal Ordering Using Process Encapsul ati on And
Paral |l el i sm

Figure V-6. Tenporal Odering Specifications For A Sinplex-

- 61 -

between alternate sequences of actions, parallelism anong
mul ti pl e sequences, and synchroni zati on between sequences. To
enable repetitive event/behavior patterns to be represented
conci sely, named processes can encapsul ate sequences. To better
expl ain this approach, an exanple is used.

Figure V-5 depicts a sinplex-duplex-buffer that can accept
a nessage on two sinplex input channels (A-in and B-in) and wll
copy the message on the correspondi ng output channel (A-out and
B- out) . The input nessages can occur in any order and the
output is in no prescribed order.

One neans to specify, using tenporal ordering, the required
behavior of the buffer in Figure V-5 is to describe the allowed
possi bl e sequences of events, as shown in Figure V-6 (a). The
process is naned sinpl ex-dupl ex-buffer and has four paraneters -

one for each port. The ; and [] operators denote sequence and
choi ce, respectively. As the reader can easily see, either
event in-a or in-b can occur first. Listed after each event is

t he sequence of actions/events that can occur after the initia
event occurs.

Figure V-6 (b) shows an alternative specification of the
same behaviors, but relying on process encapsulation (nesting
one process Wwthin another) and the parallel operator, |]].
Here, a process, one_tine buffer, is defined to nodel the
sequential behavior of one channel and then this process is
instantiated twi ce, once for the a-channel and once for the
b- channel . The instantiations then operate in parallel. The
descri bed behavior is the sane as for the explicit specification
given in Figure V-6 (a).

To increase the specification power of tenporal ordering a
nunmber of operators are wusually allowed.? In addition to

>Here, tenporal ordering draws on the specific
I npl enmentati on known as LOTCS. [1SOB7] LOTCS is perhaps the nost
anbi ti ous and advanced | anguage for witing tenmporal ordering
specifications. LOIOS is considered specifically in section VI,
Languages For Desi gners.

- 62 -

sequence of actions

(;),

choi ce

paral | el i sm anong processes (|]|]),

synchroni zati on anmong subprocesses (|]),

of processes (>>),
t enpor al ordering | anguage,
G LOTOS, has al so been defi ned.
One use of tenpora
[ROSE91]
t hat

a high

| anguage.
| anguage (TSL)
of

sequenci ng at | evel

Ada prograns with TSL statenents that

Once proper
program a set
for

noni t or program behavi or

During run-tinme,
outputs significant

noni t or. The nonitor

of
t enpor al

and process disabling ([>).
LOTGCS,

a

[1SCO2]

Rosenbl um descri bes
allows a user
abstraction and then to annotate

an Ada program when
specification events

a

to specify acceptable task

TSL statenents are enbedded as comments

conpares the sequence of

with the specification of allowable sequences.

sequences

sequenti al

gr aphi cal

(r1),

ordering can support

For at

ordering specifically targets the Ada

t ask

enbody the specification

of conpile-tinme and run-time tools can be used to
conformance wth the specification
properly

to a user-controlled

events

User (Us)

Hardware (H/W)
Prototyper (Pr)

Software (S/W)

Components Of Prototyping

Reason To Prototype

Components Involved

Exploratory
Experimental
Performance
Ergonomic
Functional
Organizational
Evolutionary

Pr + Us + S/W

Pr + S/W + H/W
Pr + S/W + H/W
Us + S/W + H/W
Us + S/W + H/W
Us + S/W + H/W
Us + S/W + H/W

Proposed Prototyping Classification

Figure V-7.

Conmponent s [MAYH37]

63 -

A Cassification O Prototypi ng By Reason And

composi tion
| east one
not ati on,

sequenci ng

in an Ada

i nstrunent ed,

recei ved

Using TSL with Ada prograns comes with a set of problens
that apply to nost tenporal ordering approaches. First, the set
of allowed sequences is difficult to specify. The run-tinme
monitoring wll not det ect specification errors; only
differences between the specification and actual run-time
behavi or can be detected. Second, a running system typically
generates many sequences of events; nerging events into proper
order is difficult and, in fact, cannot be acconplished
flaw essly fromoutside of the run-time system Third, tenporal
ordering, as the nanme inplies, captures only the relative
ordering anobng events. Tenporal ordering cannot deal wth
timng constraints, e.g., event A nust occur with 3 nms of event
B.

D. Mdel i ng and Si nul ation

"During t he past few vyears t here has been an
ever-increasing awareness that a static paper description of a
conput er-based information systens, however formally specified
or rigorously defined, is far from adequate for conmmunicating
the dynamcs of the situation.” [MAYH87, p. 481] "Predicting
t he behavior of real-tinme applications, particularly in abnormnal
situations, gets nore difficult as the applications becone nore
conplex." [HARD88, p. 48] "Because of the size of many real
systens, sinmulation and prototyping may be the only practical
forms of analysis."” [CAME9Ll, p. 562] For these reasons, system
devel opers are turning, nore often than in past years, to the
construction of prototype and sinulation nodels to animate
system specifications and designs. [BROAS8] In fact, although
prototypes and sinulation nodels are traditionally treated as
separate tools for addressing different problens, sone recent
work proposes that sinulation nodels and various forns of
prototypes should be viewed as part of an integrated tool box of
approaches for exploring a systenmis characteristics. Figure V-7
illTustrates this view

The prototyping classification in Figure V-7, due to Mayhew
and Dearnley, nicely captures several aspects of prototyping.
First, prototyping involves various conponents including the

user, the prototyper (e.g., the designer or analyst), the
software, and the hardware. Second, prototyping can Dbe
notivated by different reasons. Depending on the reason for
building a prototype, different conponents will be involved and

some, shown in Figure V-7 in bold typeface, nmay be enphasized

The classifications of direct interest in the present paper
I nvol ve the prototyper and the software. Those cl assifications
i nclude exploratory, experinmental, and performance. The purpose
of exploratory nodeling is to elicit and refine the | ogical
requirenents of t he system Experi nent al pr ot ot ypi ng
enconpasses exercising essential aspects of or alternate
proposals for the system design. Performance nodeling is a
speci al case of experinental prototyping with enphasis placed on
evaluating the system under | oad. In the paragraphs that
follow, a variety of approaches to specification and design
nodel i ng are consi der ed.

E. Executabl e Specifications

One nethod of system nodeling entails describing a systenis
requirenents in a formal specification |anguage and then
exercising the specification to assess various interesting
properties. Several researchers have proposed |anguages and
run-time environnments for nodeling system specifications. The
present paper considers those proposals intended for distributed
and real -tinme systens.

Zave devel oped a Process-oriented, Appl i cation and
Interpretable Specification Language (PAISLey) intended to
validate the feasibility of requirenents and to act as an
execut abl e design. [ZAVE82, ZAVE86] PAl SLey nerges asynchronous
processes with functional programm ng processes represented as
finite state machines. I nter-process comunication is handled

- 65 -

via exchange functions that nodel a rendezvous. As described in
1986, PAISLey possessed seven significant features. First,
PAI SLey allowed nodeling of maxi mal parallelism between
processes. The only restriction on parallelismrequires that a
process, internally, nust be synchronized at the end of each
process step. No other |anguage, at the tine, allowed both
synchronous and asynchronous parallelism free from concern with
mut ual exclusion.® A second significant feature of PAISLey is
encapsul ated conputation, i.e., every action, except for
I nter-process exchanges, in a PAISLey specification is a
mat hemat i cal functi on. Anot her useful feature is the tolerance
of i nconpl eteness. The PAISLey run-time can choose anpbng a
possible set of function evaluations when none is explicitly

defi ned. The run-time system can also query the user for the
m ssing eval uations. A fourth feature of value is PAlISLey's
ability to evaluate timng constraints. Any function can be

augnented with a tinme variable denoting an upper or |ower bound,
a distribution, or all three. The interpreter then honors
timng constraints where possible and reports failures. The
specified timng constraints are conbined with a nodel of system
overhead to enable a specification to be assessed for
per f or mance. The PAISLey interpreter also ensures, when the
specifier restricts use of recursion, that specifications can be
executed within a bounded space and tine. No process can be
starved by the interpreter because every event is executed on a
FI FO basi s.

A sixth significant feature of PAISLey is consistency
checki ng. O course, many of the <conditions that cause
undefined program states during execution cannot occur in
PAI SLey specifications because the |anguage and interpreter are

® Functional |anguages have no asynchronous processes.
Languages such as CSP represent processes as sequential .
Languages such as Ada all ow shared vari ables and thus face
problenms with nutually exclusive access.

- 66 -

defined to avoid or account for such conditions. PAI SLey can,
however, check for timng constraints and for system deadl ock.
A final feature attributed to PAISLey is ease of specification

The syntax includes set expressions (using only three
operators), mapping expressions (using three conbining forns),
timng constraints, and a single, replication notation.

For all its significant features, PAISLey also exhibits
somne i nteresting short com ngs. For exanpl e, PAI SLey
specifications are operational, specifying how, not what. This

means that users nust specify a systemwith too nuch precision
If one chooses to view PAISLey as a nmeans to execute designs
then the inefficiency of the interpreter becones a problem In
summary, PAISLey nodels fall sonmewhere between a requirenents
and design specification. The result is largely unsatisfactory
for both purposes.

Lee and Sluzier describe an executable |anguage, SXL, for
nodeling sinple behavior that ains directly at nodeling
requi renents. [LEE91] SXL enconpasses a state transition
| anguage. Each nodel may include invariants and each transition
in a nodel has associated pre- and post-conditions. The
invariants and ot her constraints are expressed wth a
conbi nati on of entity-relationship (E-R structures and
quantified, first-order | ogic. The finite state machine (FSM
interpreter underlying SXL is inplenented in Prolog. SXL cannot
nodel parallel systens because each specification consists of a
single FSM Using SXL an anal yst builds a specification by: 1)
deriving an E-R nodel of the requirenents, 2) expressing the
nodel as SXL objects and facts, and 3) mapping transitions from
an informal requirenments description to SXL events, transitions,
and constraints. The nost significant benefit from using SXL
as reported by Lee and Sluzier, is that, while building an SXL
nodel , inconplete, inconsistent, and anbiguous requirenments are
of ten uncover ed.

A recently devised specification |anguage, L.0O, targets
descriptions of protocols and simlar reactive systens. [CAME9]]
L.O is a rule-based system (where rules can be activated and

deacti vat ed dynam cal |y and sever al rul es may fire
simul taneously), that includes encapsulation, data sharing,
indirection, quantification, and recursive definition. L.O
rules are of two fornmns: cause- ef fect and constraints.
Cause-effect rules provide three general semantics: 1) once
<event> then <effect> 2) until <event> then <effect> and 3)

whenever <event> then <effect> Constraint rules sinply capture
i nvariants, using a mintain <predicate> syntax. L. 0 nodul es
conprise naned rule-sets that can be suspended, resuned,
renoved, and acti vated. Paral l el i sm anong rules and nodules is
permtted, as well as a limted degree of non-determnism For
a sinple protocol specification, an L.0 rule-space contains
bet ween 300 and 400 cause-effect rules. On average, 3% of these
rules are triggered at each program step. L.0 supports
sirmulation and prototyping because state explosion wthin
protocol specifications nmakes verification a difficult problem
The executable specification approaches covered thus far
require the analyst to learn the syntax and semantics of an
unfam |iar |anguage. A different approach, described by
Harding, wuses a set of conputer-aided software engineering
(CASE) tools, under the nane Foresight, to nodel specifications
of enbedded systens. [HARD3S] The CASE tools include graphic
editors, supporting the notation from structured analysis and
design technique (SADT) with real-tinme extensions, that allow an
analyst to create two nodels. The functional nodel describes
the basic system |ogical operation. The constraint nodel
specifies tine-critical relations between the system and
external events. The CASE environment includes tools for
generating executable nodels, including nodels of both hardware
and software, from static specifications and then to assess the

- 68 -

CAPS

S/W Database Execution Support| User Interface

|

Design Ada Translator Static Dynamic
DB Library Scheduler Scheduler

Graphic Syntax

Debugger Editor Editor

Tools
Interface

Figure V-8. Conponents O The CAPS Environnment [LUQ 92]

performance of the system By relying on SADT notation,
Foresight sacrifices the precise semantics available with other
| anguages, but gains a user interface that nost analysts find
famliar.

One final approach to executable specifications deserves
menti on because of its uniqueness. Nota and Pacini view the
i nspection of software behavior as a process of querying
execut abl e specifications. [NOTA92] Usi ng queries, an analyst
can isolate the subclass of possible behaviors to a critical set
that mght possibly be subjected to an exhaustive analysis.
Nota and Pacini define a query |anguage, RSQ that allows
anal ysts to construct queries against executable specifications
that are expressed in a |anguage called RSF. This approach is
simlar to selecting a reduced reachability graph for a Petri
net .

An alternative to using executable specifications is to
transform specifications into prototypes via a translation.
Transf ornabl e specifications are di scussed next.

F. Transformabl e Specifications

Transformabl e specifications typically enable an analyst to

describe the essential characteristics of a system design in a

- 69 -

very high-level |anguage that can subsequently be translated
into an executable system The executable system wusually
consists of nodules coded in a high-level progranm ng |anguage.
Sone of the executable nodules are generated from the high-I|evel
specification, while others are extracted from a library of
comonl y used conponents. Three exanples are described bel ow

Luqi describes a conputer-assisted prototyping system
(CAPS) for generating a color, multi-w ndow conmand and contro
application. [LUQ 92] The generated prototype consists of Ada
code. The intent of CAPS prototypes is threefold: 1) to
evaluate the structure and performance of a proposed design, 2)
to refine the system requirenents, and 3) to assess the
feasibility of the functional specification. CAPS enconpasses a
nunber of conponents as shown in Figure V-8.

Designers specify, using the Prototype System Description
Language (PDSL), the following elenments: 1) functions, 2) data
streans (that |Ilink functions together), 3) maxinmm function
response times, 4) function triggers, 5) function output
nmessages, 6) a ref erence to t he system requirenents
speci ficati on, and 7) execution tine estinmates for each
function. Using the provided information, the CAPS static
schedul er generates a feasible schedule (if one exists) for a
cyclic executive. The CAPS translator generates Ada code and
then binds together the generated code wth any needed
conponents from the CAPS Ada library. The CAPS dynamic
scheduler is used to allocate any excess tine (i.e., tinme not
required to neet the static schedule) to non-critical system
functions. The CAPS debugger nonitors the system constraints as
the prototype executes and enables the designer to nake
adjustnments while the system is running. To construct a
prototype, the designer typically uses the steps shown in Table
V- 3.

MODULA-2
Environment PNO Spec. of

Task Comm. &
Synch.

LMT Description
of PNO Spec.

Executable PNO
Specification

Real-Time PNO Tables Analysis &
Nucleus Interpretation

Figure V-9. Prototyping Wth HLPNs And MODULA- 2

Task Bodies in
MODULA-2

Al though all of the CAPS functions illustrated in Figure
V-8 have not vyet been inplenmented, CAPS has successfully
produced Ada prototypes of command and control systens. The
prototypes were produced quickly and with low cost. [LUQ 92]
Some shortcom ngs of CAPS are also reported. CAPS does not
address distributed systens because three issues remain
unsolved: 1) no nethod exists to evaluate global timng
constraints (such a met hod i's necessary to generate
conpl ementary schedulers anong nultiple nodes), 2) no nethod
exists to bound the delivery tines on nessages exchanged between
nodes, and 3) no nethods exist to detect or prevent deadl ocks
bet ween nodes.

A different approach to generating prototypes, described by
Sahraoui and Qul d- Kaddour, proposes witing sequential tasks in
Modul a-2 and describing task interactions with an extended Petri

net nodel, called Petri nets with objects (PNO. [SAHR92] The
PNO nodel is supported with a | anguage, LMI, that allows PNO
Table V-3. Producing A Prototype Wth CAPS

Desi gner draws the system conputation graphs (i.e., DFDs).

CAPS edi tor generates skel eton PDSL code.

Desi gner nodifies PDSL skel etons to produce a prototype
descri ption.

CAPS transl ator produces Ada packages that instantiate

4 data streans, systemreads and wites, and function
executions. Interfaces to the static scheduler are al so
gener at ed.

5 CAPS static schedul er searches for a feasible schedul e

and, if found, generates an Ada package with the static
schedul e represented as a task.

6 CAPS dynam c¢ schedul er produces an Ada package
encapsul ati ng a dynam ¢ schedul e for non-critical
functi ons.

7 Designer wites any necessary Ada code that is not
avail able in the CAPS Ada library.

3 CAPS conpi l es the Ada code and then | oads the system and
starts execution.

9 System users observe and evaluate the prototype results.

10 Designer nodifies the prototype as necessary.

11 Once the prototype behavior is acceptable, the code is
optim zed and ported to the target system

specifications to be translated into an executable form for
analysis and interpretation. The PNO nodel replaces PN tokens
with objects that possess a semantic neaning. Wen a transition
fires an object is renoved fromthe incom ng place and an obj ect
is produced at the outgoing place. For nodeling nultitasking
systens, PNO transitions represent a precondition and an
associated action, tokens portray nmessages, and places nodel
tasks (written in Mdula-2), mailboxes, and synchronization
poi nt s. Figure V-9 provides an idea of how the Mdula-2 and
PNQ' LMI envi ronnents are integrated.

- 72 -

Anot her approach to transformational prototyping involves
translating tenporal ordering specifications (in LOTCS, see
section VI), into C functions which are then executed by
cooperating processes in UN X [VALE93] Each LOTOS process
definition is translated into an extended FSM* The nulti-way
rendezvous included in the LOTOS |anguage is inplenented via an
al gorithm based on inter-process nmessage passing. No support is
provided for translating LOTOS abstract data types. (See |ater
parts of section V and see also section VI for information on
abstract data types and LOTOS.) To build prototypes using this
nmet hod, LOTCS specifications nust be free from unbounded
recursions.

A hybrid approach to prototyping wth transfornmationa
specifications is advocated by Choppy and Kaplan. [CHOP90] They
propose a nethod for increnental devel opnent of |arge, nodul ar
software systens. Moddules conprising a system nay interact even
when the nodul es exist at different states of devel opnent. Each
nodule may be fully abstract (existing solely as an al gebraic
speci fication), may be fully <concrete (inplenented in a
programm ng | anguage), or at a mx of points between abstraction
and concreteness. They define an algebraic |anguage (PLUSS)
t hrough which axionms can be constructed as Horn clauses built
over equations or predicates. They al so describe an execution
environnment, ASSPEG QUE, that can perform nixed evaluation of
Horn clauses augnented wth concrete inplenentations. The
concrete portions are inplenented in Ada.

G Testbed-Based Prototypi ng

*This reveals an interesting relationship between tenporal
ordering and finite state automata (FSA). Tenporal ordering
specifications describe allowabl e behaviors but provide no clue
as to generating a systemthat exhibits such behaviors. Systens
t hat behave according to an extended FSA are easy to generate
but verifying that an observabl e sequence of external events
conforns to a given extended FSA remains a difficult problem

- 73 -

Chu, et al., advise that prototypes can be used to best
advant age when experinental inplenentations are exercised in
test bed environnents. "Testbeds can be configured to represent
the operating environnents and input scenarios nore accurately
that software sinulation. Therefore, testbed-based evaluation
provides nore accurate results than sinulation and vyields
greater insights into the characteristics and limtations of
proposed concepts." [CHU87] Chu describes two tightly-coupled
mul ti-conmputer testbeds that provide efficient i nter-node
comuni cation and full connectivity anbng processors and nenory.
The testbeds can support the validation of design techniques for
distributed, real-tine systens. Chu reports on wusing the
testbeds to study the behavior of: 1) distributed algorithns, 2)
recovery schenes, 3) distributed database |ocking techniques,
and 4) wupdate strategies for replicated data. Test beds can
provi de realistic nodel i ng of di stribution; however,
constructing and nmintaining testbeds of sufficient flexibility
can be expensive. In addition, the construction of prototypes
I n testbeds can al so prove | abor-intensive.

H Sinul ation

Si nmul ati on IS a form of pr ot ot ypi ng particularly
appropriate for system performance eval uation. "Sinmulation is
the process of designing a nodel of a real system and conducti ng
experiments wth this nodel wth the purpose of either
understanding the behavior of the system or of evaluating
various strategies...for the operation of the system" [ZEl G4,
p. 2] Sinulation presents an analyst with three difficult
probl ens: 1) choosing a |level of detail in the nodel conpatible
with the analyst’s nodeling objectives, 2) verifying that the
nodel accurately represents the nodeled behavior, and 3)
validating that the nodel reflects the behavior of interest.

In general, simulation nodels can be constructed using
t hree approaches. The nost w dely known approach requires an

- 74 -

CONTROL SHELL

Libraries Filer Experimental Report
Frame Generator
S li
Graphs | Zoiines | Other
Simulation Model Simulation
Model Configurator Logic

Figure V-10. GCeneral Structure O A Simulation Generator
[PI DD92]

anal yst to construct an abstract nodel, to identify the salient
nodel paranmeters and values of I nt erest, to select an
experinmental methodol ogy and netrics, and then to code the nodel
in a sinmulation |anguage. [ZEI GB4] This approach is often used
to assess the performance of conmmunications protocols and to
eval uate various comruni cati on network configurations.

For exanple, Finn, et al., sinulated the design of a
hi erarchi cal system of nultiple access busses in a real-tine
control system [FINN92] They wi shed to estimate, wthin a
specific probability, the delay of two types of nessages, one
with a maxinmum delay constraint of 1 nms and one wth a
constraint of 1 second, under expected |oads, given a specific
configuration of nodes connected by busses wth a maxinmm
capacity of 1 Mops each. Initially, they perforned a
mat hemati cal analysis. The results of the analysis were suspect
because a nunber of restrictive assunptions were required to
keep the nodel tractable. Next, they constructed a functional
simul ati on using Pascal. The Pascal nodel proved efficient and
flexible, but l|acked a graphical user interface and was also
difficult to debug. Finally, they use a sinulation tool, the

- 75 -

Bl ock-Oriented Network Sinulation (BONeS), which proved useful
for determning the details of hierarchical network behavior,
bus interface delays, and acutal maxi mum queue depths.
Unfortunately, the detailed BONeS nodel executed very slowy.
The three, different nmethods described by Finn illustrate sone
of the tradeoffs that nust be considered when using a simulation
nodel .

Parr and Bielkowicz, too, resorted to sinmulation to
eval uate the performance and behavior of a communication system
In particular, they proposed a new, self-stabilizing, bridge
protocol (to replace the |EEE 802.1D spanning tree algorithm
for interconnected ethernets. [PARRO2] They also found
analytical nodels to require unrealistic assunptions. In
addition, they pointed out that analytical nodels can only
capture steady-state behavior and, therefore, cannot evaluate a
systenis behavior under transient conditions. Both Finn and
Parr found analytical nodels to be a useful tool for verifying
nore detailed sinulation nodels.

Because building, verifying, and validating simnulation
nodels require great skills and incur high expense, researchers
are investigating nethods to generate sinulations fromlibraries
of generic, donmin-specific nodels. [DEME91l, ZDE93, PIDD92,
ZEl &RB7] Figure V-10 illustrates the general conponents of a
system to support nodel generati on. A nunber of
general - purpose, data-driven sinulators have been devel oped,
i ncl udi ng GPSS, HOCUS, and W TNESS. Donai n- speci fi c,
data-driven sinulators include: SIMACTORY (witten in SIMCRIPT
[1.5), MAST (witten in FORTRAN), PROPHET, and XCELL+.

Ozdemi rel and Mackul ak describe an approach that allows
users to construct specific nodels of manufacturing systens by
selecting and then configuring a pre-built, generic nodel.
[OZDE93] In their system 14 generic nodel nodules were witten
usi ng 2500 lines of SIMAN code. A user interface, conposed of

- 76 -

8000 lines of Turbo Prolog code, acts as an expert adviser for
nodel selection and enables a user to configure the nodel. They
propose their approach based on the belief that the nost
difficult skill required of a sinulation designer is devel opnent
of a conceptual nodel. Their approach reduces conceptual node
devel opnment to an expert system assisted search

DeMet er and Dei senroth propose a framework for construction
of heterogeneous nodels for sinulating nulti-stage manufacturing

systens. [DEME91] Het er ogeneous nodels consist of a mx of
highly detailed nodels interspersed anong a |larger set of
generalized nodels of |low detail. This enables nodeling of
specific parts of a system or design, in enough detail to
assess behavi or, TYPES

while allowing the STACK][X]

nodel to also be EUNCT] ONS

observed within a| enpty: STACK X] -> BOOLEAN
new. -> STACK[X]

i mul at ed
stmiate | push: X x STACK[X] -> STACK[X
envi ronnment. This| pop: STACK[X] -|-> STACK[X
appr oach is top: STACK[X] -|-> X
particularly PRECONDI TI ONS
sui tabl e for| pre pop (s: STACK[X]) = (not enpty(s))
eval uati ng newl PT€ top (s: STACK[X]) = (not enpty(s))
conmmruni cat i ons AXI OVB
- For all x: X, s: STACK[X]:
rotocol s operatin
P oP 9 enpty(new())
under a sinulated, not enpty (push(x, s))
net wor k | oad. top (push(x,s)) = x
pop (push(x,s)) = s
I n sunmary,
si nul ation nmodel s Fjgure V-11. Exanple ADT For A Stack
can prove useful for [MEYEBS, p. 55]

assessing both the

behavior and performance of distributed, real-tine systens.
Properly constructed nodels, augnented with accurate paraneters
and effectively designed experinents, can be used to assess a

- 77 -

systenis typical performance under steady |oad, worst-case
performance under peak | oad, and response to transient
condi tions. Unfortunately, a sinmulation nodel is only as
effective as it is accurate. Model builders need skills in: 1)
conceptual nodel developnent, 2) translating from conceptual
nodel to executable nodel, 3) analysis for estinmating nodel
paraneters, 4) experinent design, and 5) analysis of nodel
results. In addition, nodelers need an understanding of the
probl em domain and specific system to be nodel ed. I ndi vi dual s
possessi ng such skills can be found only rarely. Even when such
experts exist, extensive tinme and effort are involved in
building a simulation, verifying and validating the nodel,
designing and conducting experinents, and then interpreting the
results. Tinme and effort translate into expense.

This conpl etes consideration of formal nodels and nethods
for specifying and anal yzing system behavi or. The final three
formal methods discussed, tenporal |ogic, axiomatic nethods, and
abstract data types, are structural nodels.

I. Abstract Data Types

Abstract data types (ADTs) enconpass a neans and a theory
for specifying mathematically the essential characteristics of a
data type, or class. An ADT specifies the nane of a data type,
the functions available to manipulate the data type, and a set
of axions that characterize the data type. Some of the axions
of an ADT, so-called invariants, describe properties that wll
al ways hol d. O her ADT axions specify the preconditions that
must hold for a specific function before the result can be
obt ai ned. ADTs can be specified using first-order, quantified
logic (FOQL) or using an algebraic notation. Figure V-11 gives
an exanple ADT for a stack specified using FOQL. (See section
VI, LOTCS, for an exanple ADT specified algebraically.)

The stack ADT in Figure V-11 consists of four sections.
TYPES specifies the nane of the ADT, STACK, and indicates

- 78 -

el enents of any type, X, can be placed on the stack. FUNCTI ONS
contains the syntax of the operations provided by STACK; the
syntax includes a function nane (shown in italics), any input
paraneters, a function arrow (-> denotes a total function and

-|-> denotes a partial function), and any results. Tot al
functions wll achieve the indicated result wunder any input
condi tions. Partial functions can achieve the stated result

only wunder restricted input conditions, so for each partial
function a precondition nust be given that specifies the

condi tions under which the associated function will achieve the
intended result. In the exanple, functions pop and top will not
work when a stack is enpty. The final section of the ADT

contains AXIOVS defining the semantic properties of the ADI. In
the exanple, the axions apply for all elenents of type X and for
all stacks of type STACK X]. For exanple, when top is called
i medi ately after element x is pushed onto stack s (push(x,s)),
the element x will always be returned. Each axiom listed w |l
al ways be true for the ADT STACK| X] .

ADTs provide a convenient neans for specifying formally the
properties of information hiding nodules in a software design
ADT specifications are static and require that a program be
witten to generate the specified behavior. This can present a
probl em when sinulating designs because the program underlying
an ADT nust be inplenented in order to present an active
I nterface. Wang and Parnas are investigating one possible
method of animating information hiding nodules (IHVE) from
nodul e specifications. [WANG3] They propose specifying an |HM
using trace specifications. They suspect that, given trace
assertions for a trace specification, the externally observable
behavior of a nodule can be sinulated through trace rewiting
rules. In effect, they view ADIs as finite state machi nes that
can accept inputs and sinmulate responses using a trace rewiting
system Should Wang and Parnas achi eve acceptable results, |HW

- 79 -

could be specified and sinulated within a design w thout having
to i nplenent the underlying, application-specific, code.

In summary, the reader should understand that witing a
formal ADT specification is difficult work. Once an ADT is
specified, the specification nust be animated in sonme way to
support design simnulation. In addition, ADTs cannot be used to
descri be the behavioral or correctness properties of sequenti al
tasks. Axiomatic nmethods provide nore aid in specifying tasks.
J. Axiomatic Methods

Sequent i al progranms conprising constructs for choice,
sequence, iteration, assignment statenents, and subprogram calls
can be specified as a set of axions using FOQL. |In general, the
approach requires that a program result be formally specified
and then that a set of programmng steps be derived that wll

enable the result to be obtained, given a determ ned
precondition, provided that the program term nates. At each
step I n t he program derivation, appropriate st at enment
preconditions or |loop invariants are found. \Wen a program has
been conpl eted, proof exists that a program S, wll achieve a
known result, R given a specific precondition, Q Thi s

relationship is usually specified as {Q S {R. Wen {QG S {R
holds for every step in a sequential task, the task is said to
be partially correct. For concurrent prograns, safety nust al so
be ensured. A safe program will never enter an unacceptable
state such as conflicting access to shared data, deadl ock,
critical races, or starvation.

Two neans exist to prove programs correct: 1) operational
proofs and 2) axiomatic proofs. [KARA91] Oper ational proofs

entail synbolic execution of a specification and then an
evaluation of the resulting execution tree. This is simlar to
program testing. Qperational proofs are best wused when
axi omatic proofs are not possible or not practical. Axi omati c

proofs use the rules of a system of logic or algebra to

- 80 -

establish program correctness against a specification. Recent
research ains at applying these nmethods to concurrent prograns.

The approach proposed by Dillon requires that each task’s
I nt ended behavi or be axiomatically specified as descri bed above.
[DILL90G Each task is then executed synbolically to generate
trees of every possible task state. Fromthe execution trees, a
set of predicate logic forrmulae (verification conditions) are
gener at ed. Any program for which these verification conditions
can be proved is known to be partially correct.

After all tasks are verified, assertions (consisting of
| ocal and gl obal invariants, augnmented with auxiliary vari abl es)
are inserted into the tasks and a higher |level synbolic
execution tree is generated to evaluate the safety properties of
the concurrent program To ensure safety, di stri buted
term nation of all tasks nust be shown and absence of rendezvous
failure must be assured. (Since Dillon’s nmethod applies to Ada
prograns, rendezvous failure neans that a select statenment has
no open alternatives or that an entry call is invoked after a
task has term nated.)

The work reported by Dillon is limted to Ada prograns and
addresses only logical correctness and a limted set of safety
properties. Extensions are needed to incorporate timng
information into the axions so that the real-tinme behavior of a
program can be expressed and then proved. Oher researchers are
al so investigating this problem For exanple, Ravn, et al.,
propose specifying real-time requirements as fornulae in a
duration calculus (also called a real-tinme interval |ogic) where
predi cates define the duration of states. [RAVNO3] The top
| evel design of a system describes a control law, that is, a
finite state machine controlling transitions between phases of
an operation. The work of Ravn, et al., conbines finite state
machi nes, ADTs, represented with Z (see section VI), and
tenporal | ogic.

K. Tenporal Logic
Tenporal |ogic can be used to describe sequences of program

states (rmuch as tenporal ordering). Mst tenporal |ogic systens
begin with FOQL and then add a set of tenporal operators. The
nost of ten encount er ed t enpor al operators i ncl ude: 1)
eventual ly, 2) next, 3) until, and 4) henceforth. These extend

the ability of Jlogic systenms beyond the typical tenporal
operators: there exist and for every. Tenporal logic can be
applied to specify and anal yze sel ected properties of concurrent
syst ens.

Karam and Buhr describe the application of tenporal |ogic
to anal yze concurrent Ada prograns for deadl ock. [KARA91] They

propose a specification |anguage, ca., supported by a
specification analyzer witten in Prolog. An Ada system
composed of N concurrent, infinitely-executing tasks, 'S

specified as an N-tuple of the control and data states for each
t ask. The system state changes whenever the state of one task
changes. Discrete time is nodeled, then, as a sequence of
system st at es.

The COL specification |anguage adds the four, typical,
tenporal operators to FOQ, but also provides a built-in library
of predicates specifically for Ada. To sinplify the analysis of
specified prograns, several Ada features are excluded: 1)
dynami c task creation and destruction, 2) tinmed or conditional
task calls, 3) delay or else selective accept alternatives, 4)
exceptions, and 5) dynamc data creation (this elimnates
procedural recursion). Wiile excluding features (1) and (5)
above seens acceptable, exclusion of the remaining features
m ght overly restrict the form of Ada progranms that can be
specified with COL. Still, Karam and Buhr report that the

"...COL language paints a |imted, but useful picture of the Ada
| anguage. " [KARA91, p. 1124]

Tenporal 1ogic does extend the specification and reasoning
power of FOQL so that tinme ordering can be considered. Still,
as wth tenmporal ordering, specific timng constraints cannot be

descri bed and reasoned about. This limtation also holds for
ADTs and for axiomatic nethods in general. In addition, these
nmethods are difficult to wuse for specification. Wr se,

reasoning wth these nethods is sonetines |abor-intensive,
al ways error-prone, and, when automation can be applied,
conput ati onal | y-i nt ensi ve, sonet i nmes to t he poi nt of
infeasibility.

The formal nethods and nodels covered in section V, often
provide the wunderlying theory for design and specification
| anguages. Languages strive to enhance the underlying
formalisnse with sonme suitable syntax and, wusually, wth a
run-time environnent that can help a designer aninmate proposed
desi gns. In the next section, sone design and specification
| anguages, based on the formal nethods and nodels discussed
above, are considered.

VI. Languages For Designers

Languages inplenenting sonme of the formal nodels described
in section V can help designers to describe and exercise
speci fications and designs. The follow ng paragraphs discuss
some representative desi gn and speci fication | anguages:
Communi cating Sequential Processes, Zed, Comrunicating Shared
Resources, Extended State Transition Language, and Language of
Tenporal Ordering Specification.

A. Communi cati ng Sequential Processes

Ant hony Hoare proposed a mathematical notation and
semantics for specifying cooperative behavior between sequenti al
processes that comunicate. [HOAR85] The notation, called

- 83 -

[producer::
*[{generate iten} -> buffer ! item

I
buffer::
[content : (0..n-1) item
i ncount, outcount : integer;
i ncount := 0; outcount := 0;

*[incount < outcount + n; producer ? content
(incount nod n) -> incount := incount + 1;
[] outcount < incount; consumer ? request() ->
consuner ! content (outcount nod n);
outcount := outcount + 1

/1
CONSUNer :

*[buffer ! request(); buffer ? item {use iten}]
]

Figure VI-1. CSP Program O A Buffered Producer-Consumner
System [HULL86, p. 501]

Communi cating Sequential Processes (CSP), conbines first-order
logic, set theory, functions, and traces to define a process
logic wth synchronization based on synchronous nessage
exchanges. (CSP also allows shared data with a limted
semantics.) Hoare added, to the syntax and senmantics, |aws for
reasoni ng about the behavior of processes. CSP goes quite far
toward defining a theory of distributed, concurrent systens.
Each CSP process is represented as a sequential program (which
can terminate) that operates according to program statenents
that can be both determnistic and non-determnistic. CSP
processes interact via mnessages. Hoare shows how CSP can be
used to specify interruptable (with resune) processes, restart
after failure, alternation anong behaviors, checkpoints, and
shared resources. In the main, CSP ains to detect or avoid
deadl ock, starvation, and livelock in concurrent systens.

Hoare chose to reject certain features so that CSP could
remain sinple and clear. For exanple, shared-storage is not

- 84 -

supported, nor is nulti-threading wthin processes. These
onmi ssions elimnate such nodels as conditional critical regions,
nonitors, and nested nonitors. Hoare finds that Ada is well
designed (if quite conplex) for multiprocessor inplenentations
using shared data, so he <chose to -enphasize distributed

processes. Regarding the controversial area of comunication
paradi gns, Hoare prefers an RPC nodel, limting inter-process
nmessage exchange to synchronous comrunicati ons. He consi dered
and rej ected single and mul ti pl e, buf f er ed channel s,

bi -directional buffered channels, functional nultiprocessing,
and unbuffered comruni cati ons.

A nunber of researchers started with CSP as a base for a
mul ti processi ng | anguage. In each case, CSP could not be used
wi t hout change. [HULL86] The CSP inter-process conmunications
paradi gm proved nost troubling. CSP processes communi cate, and
synchroni ze, with input and output comrands. The general form
is source?variable for input and destination!variable for output.
CSP provides guarded alternative and repetition constructs to
enable nmultiple, iterative nessage reception. A sanple CSP
programis shown in Figure VI-1

Si nce al | CSP comuni cati ons is tightly-coupl ed
| oosel y-coupled comrunications can only be sinulated by
introducing an internmediate process (a conmobn occurrence wth
Ada), as shown wth the buffer process placed between the
producer and consumer processes in Figure VI-1. In CSP
alternating behavior is denoted by *[...], choice by [..][]..],
parallelismby //, sequence by ;, and guards are followed by ->.
Statenents enclosed in {} are coments. The exanple in Figure
VI -1 can probably be followed w thout further explanation.

Each CSP program is specific to the nanes of the
destination and source processes that make up the program This
proves nost unsatisfactory when witing processes that nust be
used in a variety of systens. Anot her shortcom ng of pure CSP

- 85 -

is the allowance for non-determ nism Non-determnism in
progranms is usually only acceptable when the guards that are
enabl ed sinultaneously have equal priority. In other cases,
sone order of selection nust be inposed on the guarded
statenents. A final drawback of CSP is the |lack of support for
data types.

Researchers at the University of Adelaide inplenented CSP
as COSPOL. [HULL86] COSPOL adds asynchronous commruni cations to
CSP and i ncl udes Pascal data typing. In addition,
non-determnismis restricted to guarded alternative statenents
used for message input. Another inplenentation, CSP/80, was the
product of a group of academics in the UK [HULL86] CSP/80 adds
the concept of a comunications port to CSP;, thus, CSP/80
processes are de-coupled fromthe identity of the processes with
whi ch they conmuni cate. CSP/80 allows C data types, but wth
strong typing. CSP/ 80 supports nodularity and also allows
output statenents wthin guards (a feature not permtted by
CSP) . CSP/ 80 does support the full non-determ nism of CSP.
Per haps the nost fanous inplenentation of CSP is known as Occam
a |lowlevel | anguage devel oped by | nnos, Lt d. for the
Transputer. [HULL86] One can view Cccam as an assenbly | anguage
for CSP. COccam an untyped |anguage, provides basic statenents
for sequence, parallelism choice, and while | oops. Al'l GCccam
i nter-process conmunication is via unbuffered, unidirectional
channel s. Occam al l ows both determ nism and non-determ nism in
choi ce statenents. Occam as with CSP, does not permit output
statenents in guards. O the three inplenmentations reported
here, Occam aligns nost closely wth CSP. The only real
enhancenent provided by Cccamis the introduction of channels to
de-coupl e processes fromthe names of other processes.

Later, Brinch Hansen used CSP and Pascal to form the basis
of a distributed systens progranm ng |anguage he called Joyce.
[HANS87] Joyce permts processes to exchange nessages Via

- 86 -

[Location, Value]

| bound : N

—— Sensors
readings : Location+ - Value
areas: PLocation

#areas < bound
domreadings [] areas

_____ Update

ASensors
I?: Location
v?: Value

[? 0 areas
readings =readings {1? - v?}

areas = areas

Figure VI-2. Sanple Zed Specification O A Sinple Sensor ADT

synchronous, bi-directional channels that may be shared by two
or nore processes. A Joyce rendezvous, however, always involves
exactly two processes. When nore than two processes are ready
to rendezvous on a channel, two are selected arbitrarily. Joyce
allows processes and channels to be created dynamcally.
Processes can also be activated recursively. Because Joyce uses
Pascal for data typing, nessages exchanged between processes can
be of different types, even across the sane channel. Thi s
permts the Joyce conpiler to check nessage types.

Al though CSP and the |anguages that inplenented CSP never
achieved a large, practical presence in the marketplace, they
did influence the thinking of designers of |ater |anguages. The
reader will perhaps be able to detect sone of these influences
when Estelle and LOTCS are discussed later in this section.

- 87 -

B. Zed

Zed is a language for specifying ADIs and systens of ADTs.
[POTT91] Zed, initially devised at Oxford University's
Programm ng Research G oup, is based upon first-order |ogic and
special set theory. [DILL91D Zed uses a famliar two-val ued
system of logic (as opposed the Vienna Devel opment Method which
uses a three-valued logic). Zed has been used at IBM to
re-specify the Custonmer Information Control System (CCS).
Re-specifying CICS in Zed enabled IBM analysts to discover a
nunber of errors and om ssions that had not be detected even
though CICS is a twenty-year-old conmmrercial product.

Zed specifications yield a functional description of what a
system is to do, as opposed to how a system is suppose to
acconplish its objectives. This declarative approach, sonetines
call ed operational abstraction, |eads to concise, unanbiguous,
exact specifications that are easy to reason about. Zed al so
enpl oys representational abstraction by using high-Ievel,
mat hemati cal concepts w thout worrying about how these concepts
wi |l be inplenented.

The main syntactic tool of a Zed specification is known as
t he schema. Each Zed schema contains a schema nane, a set of
definitions, and a specification of the post-conditions
associated with any preconditions required by the schens. In
general, Zed schemas specify one operation in an ADT or system
Figure VI-2 gives an exanple of using Zed to specify a sinple,
but inconplete, sensor ADT.

The main schema, naned Sensors, conprises a partial
function, readings, that maps from a Location to a Value
(Location and Value are defined as sets). The set areas is
defined as the power set of the set Location. The vari abl e
bound is a schema constant from the set of positive nunbers.
Sensors defines two invariants: 1) the nunber of areas cannot

exceed the bound and 2) the domain of readings nust be a proper
subset of areas.

process Sensor

| ocal sanple

out put data

timevar t

every 6 do
exec(sanpl e);
scope do idle interrupt send(data) -> skip
timeout t hard -> skip od

od

process Conv

i nput data

| ocal conpute

out put coord

| oop do

recv(data);

scope do exec(compute); send(coord)

timeout 2 hard -> skip od

od

Figure VI-3. Sanple CSR Description O A Sensor And Converter
[KERB92, p. 772]

The schema (pdate represents an operation in the Sensor
ADT. The operation alters the Sensors schena. Updat e requires
two inputs: |/ is a nenber of the set Location and v is a nenber
of the set Value. As a precondition to the Update operation, [,
must be an elenent of the set areas. If the precondition is
satisfied, then the function readings will be updated so that
the old value associated with input Location, [, wll be
repl aced by the new input Value, v. The areas set will not be
changed.

In sunmary, Zed provides a rich set of operators conbining

first-order logic with special set theory. The notation is,
perhaps, too rich for easy use. Zed allows precise and concise
specification of the semantics of a system From a Zed

specification additional properties can be reasoned about a

- 89 -

system Zed provides no clue as to how a operation is to be
acconpl i shed.
C. Cormmuni cating Shared Resources

Gerber and Lee propose a |layered approach to specifying and
verifying real-time systens. [GERB92] Their top layer is an
application | anguage that allows the specification of tinme-outs,
deadl i nes, periodic processes, I nterrupts, and exception
handling. Their mddle |ayer conprises a configuration |anguage
that can be used to map processes to system resources and to
descri be the comuni cations |inks between processing nodes. The
application and configuration |anguages, taken together, conpose
a specification |anguage called Conmunicating Shared Resources
(CSR) . The configuration mapping can be translated into a
process algebra, called calculus of CSR (CCSR). CCSR defines a
semantics upon which a reachability analyzer is based. The
objective of the CSR paradigmis to facilitate the specification
of real-time processes and then to enable a static eval uation of
various design alternatives. Eval uating alternative designs
I nvol ves mappi ng a functi onal descri ption to vari ous
configuration descriptions and running the reachability anal yzer
on each configuration.

The CSR application |anguage conprises declarations and
stat enments. Declarations include ports for sending output
nmessages and receiving input nessages, events for executing
| ocal operations, and timng paraneters that are used in certain
types of statenents. CSR application |anguage statenents
i nclude send and receive, tine-outs, periodic |loops, interrupts,
exception handling, and sequential conposition. The enphasis is
on describing inter-task operations. Discussing a small exanple
shoul d prove instructive.

Figure VI-3 shows a brief specification of a sensor and
converter in the CSR application |anguage. The CSR keywords are
rendered in boldface type. The process Sensor contains three

- 90 -

declarations: a local operation (sanple), an output channel
(data), and a free tine variable (t) that can be set from a
configuration description. Sensor wakes every six seconds,
executes sanple and then attenpts to output on data. If the
output is not accepted within tinme t, then Sensor sinply stops
trying. The process Conv |oops forever. First, Conv waits for
i nput on dat a. Once input arrives, the local operation conpute
is perforned and then an attenpt is nade to send a nessage on
coord. If the nessage is not accepted in 2 time units, then
Conv sinmply returns to the top of its | oop.

CSR provides for three fornms of concurrency. Processes can
execute concurrently on the sanme resource and on different
resources (i.e., be nodeled as a distributed systen). The third
form of concurrency, intra-process concurrency, can be nodel ed
by the anal yst using the interl eave statenent.

The CSR configuration |anguage enables an analyst to
decl are system resources (resource), to bind priority and tine
values to processes (process), to nap processes to resources
(assign), to create channels by connecting ports (connect), and
to define Ilimts to resources (close). The configuration
| anguage al |l ows hi erarchical schemas for added conveni ence.

The cal culus of CSR defines an underlying semantics using
set theory and two sets of inference rules: 1) an unconstrai ned
transition systemand 2) a transition systemto nodel preenption
and priority. A translator can map the CSR processes into CCSR
terns. At first, GCerber and Lee planned to inplenent the
semantic nodel as a rule rewiting system but wusing the
"...rewite rules stretches the range of both endurance and
patience."” [CGERB92, p. 781]. They decided to try reachability
anal ysi s instead. A CSR specification, after translation into
CCSR, is guaranteed to produce a finite reachability graph.
Once the systemis state-space is generated, real-tine errors can
be found directly.

A CSR application |acks the abstraction usually found in a
requi renents specification but a program can be easily produced
from a CSR description. CSR seens to be nore appropriate as a
design tool that as a specification aid. In fact, a underlying
nodel can probably be developed to sinmulate a CSR application
and configuration. CSR seens to hold sone prom se as a tool for
designing and eval uating distributed, real-tine systens.

D. Extended State Transition Language (Estelle)

Estelle is a |language for describing formally the
properties of comrunications protocols and other distributed
syst ens. Estell e developed from efforts to specify protocols
for Open Systens Interconnection (OSI). [D AZ89, |1SM2] Estelle
extends the syntax and semantics for the international standard

for Pascal. The nodel underlying these Pascal extensions is a
system of hierarchically-structured, comunicating finite state
machi nes (FSMs). Estell e FSMs, encapsul ated as nodul es, may be
active or passi ve. Active FSMs can run in parallel,

comuni cati ng by exchangi ng nessages. (Sharing of variables is
supported between parent and child nodul es.)

,,,,,,,,,,,,,,,,,

Figue VI-4. Exanple Estelle Specification Architecture
[CHAMB2, p. 6]

Interfaces between Estelle nodules consist of three
conmponents. Interaction points, which can be external to peer
nodul es or internal for parent-child nodul es, define the input
and out put points at which nodul es can comruni cate. Interaction
poi nts are unbounded, FIFO queues that can be point-to-point or
shared (known as comobn queues in Estelle). I nteractions
conprise the nmessages that can be exchanged through an
i nteraction point. Al l send operations in Estelle are
non- bl ocki ng. Channel s consist of two sets of interactions (in
and out).

An Estelle specification conprises a hierarchy of nodule
descri ptions. Quter nodul es, each representing one physical
node, can either of two types: systenprocess or systenactivity.
Each systenprocess nodule can initiate subordinate active
nodul es (process or activity) and each systenactivity nodul e can
initiate subordinate activity nodul es. A systenprocess permts
multiple transitions to fire in subordinate nodul es during each
firing cycle. A systemactivity allows only one enabled
transition to fire during a firing cycle; when nultiple
transitions are enabled, one is selected non-determnistically
for firing. Perhaps an exanple wll help cut through the
t hi cket of Estelle jargon

Figure VI-4 shows an exanple of the architecture of an

Estell e specification, SP. The specification consists of two
systens, or nodes, S1 and S2. S1 and S2 each offer a single
external interaction point, ip x and ip y, respectively. These

i nteraction points have been connected in the parent nodule, SP
System S1 consists of a single process, nodule A that has

anot her nodule, B, nested within it. Modul e B has an internal
interaction point, ip b, that is attached to nodule A's
interaction point, ip a which is in turn attached to system
Sl's ip X. This connection graph inplies that nodule B can

exchange interactions with other nodes, in this case node S2.

- 93 -

System S2 consists of two processes, nodules C and D. Only
nodul e C can exchange interactions with other systens. Modul es
C and D are connected through two pairs of interaction points
(ip c2-ip d1 and ip c3-ip d2). Each participant at an
I nteraction point nmust be assigned a nanmed role that [imts the
al l owabl e nessage types that the participant can send and
receive. An Estelle channel is an interaction point with a
naned role and a designation of whether the queue is
poi nt -t o- poi nt or conmon.

The internal behavior of each active, Estelle nodule is
specified using FSMs, extended with state-history variables and
predicates that can guard transitions. Each transition
represents an atomc set of actions. A delay construct is also
I ncluded to represent the passage of tine.

The syntax of Estelle nodules, adapted from Pascal
i ncludes a header and a body. For a given header, nultiple
bodi es can be defined so that different inplenentations of the

same interface can be instantiated. A nodul e body consists of
three parts: declarations, initializations, and transitions.
Decl arati ons conpri se channel s, nest ed nodul es, nodul e

vari ables, states and sets of states, and internal interaction
points to children. The initialization portion defines the
starting state, assigns variable values, starts any child
nodul es, and connects and attaches interaction points. In
Estelle, alternative initializations can be specified. The
transition section describes the FSM that controls a nodule’s

behavior. The form of a transition is: transition from <state>
to <state> [when <predicate> | provided <predicate>] [delay
<tinme>]. Estell e nodul es can al so use Pascal statenents, along

with sone additional statenents added for Estelle operations.
Estell e-specific statenents allow nodules to be controlled
(init, release, and termnate), enable interaction points to be

managed (connect, disconnect, attach, detach), send interactions

- 94 -

speci ficati on EXAMPLE;

defaul t individual queue;
ti mescal e second;

channel UCH(User, Provider);
by Provi der: DATA | NDI CATI ON,

channel NCH(User, Provider);
by User: DATA | NDI CATI ON;
by Provider: SEND ACK(x : integer);

nodul e USER systenactivity;
Ip U UCH(User);
end;

body USER _BODY for USER;, external

nodul e RECEI VER systemactivity;
ip U UCN(Provider); N NCH(Provider);
end;

body RECEI VER BODY for RECEI VER, external; (*see Figure VI-6 *)

nodul e NETWORK systenmactivity;
ip N: NCH(User);
end;

body NETWORK BODY for NETWORK; external;
nodvar X: USER; Y: RECEI VER Z: NETWORK;

intialize
begi n
init X with USER BODY
init Y with RECElI VER BODY;
init Z with NETWORK BODY;
connect X.Uto Y. U
connect Y. Nto Z. N

Figure VI-5. Exanple Estelle Specification -- Part |
[1S®92, p. D.35]

(output), and add some convenient operators (all, forone, and

body RECElI VER BODY for RECEl VER;
(* declarations *)
type time_period = integer;
const high = 0;
medi um = 1;
low = 2;
state | DLE, AK_SENT;
var ak no : 0..7;
mn, max, inactive_period : time_period,
(* initializations *)
intialize
to | DLE
begi n
mn :=1;, max := 20; inactive_period := 60;
ack no := 0;
end;
(* transitions *)
trans
from | DLE
to | DLE
priority medi um
when N. DATA | NDI CATI ON
nanme t1: Dbegin
out put U. DATA | NDI CATI ON;
ak no := ak_no + 1;
end;
to AK_SENT
provied (ak_no > 0) and (ak_no <= 4)
priority |ow
del ay(m n, max)
name t2: begi n
out put N. SEND_AK(ak_no)
end;
provied (ak_no > 4) and ak_no < 7)
priority high

del ay(m n)
name t 3: begi n
out put N. SEND_AK(ak_no)
end;

(* CONTI NUED ON NEXT PAGE *)

Figure VI-6. Estelle Specification O RECElI VER BODY

[1SC02, p. D.40-D. 41]

- 96 -

(* CONTI NUED FROM PREVI QUS PACGE *)

provi ed ak_no =7

priority high
name t4: begi n
out put N. SEND_AK(ak_no)
end;

provi ed ot herw se;
priority | ow

del ay(i nactive_peri od)

name t5: begi n
out put N. SEND_AK(ak_no)
end;
from AK_SENT
to | DLE
name t6: begin
ak_no := 0;
end;

end;

Figure VI-6. Estelle Specification Of RECEI VER BODY - Cont.
[1SO92, p. D. 40-D. 41]

exist). An exanple will illustrate Estelle syntax.

Figure VI-5 gives part of an Estelle specification for a
one-way receiver that acknow edges nessages that are received
This specification, named EXAMPLE, defines two channels, UCH and
NCH. Each channel allows two roles, a User and a Provider. On
channel UCH, the Provider can send a DATA | NDI CATI ON
interaction, the User sends nothing (renenber, the exanple is

recei ve-only). On channel NCH, the User <can send a
DATA | NDI CATION interaction, while the Provider can send a
SEND_AK I nteraction cont ai ni ng a single i nt eger. The

specification also declares three nodes, USER, RECEIVER, and
NETWORK. For each node, a channel is indicated and a role is
defi ned. The RECEIVER is a Provider on channels UCH and NCH
The NETWORK is a User on channel NCH and the USER is a User on

- 97 -

channel UCH. Only the headers are given for each nodule; the
bodi es are specified el sewhere.

The specification, EXAMPLE, also declares three nodule
variables, X, Y, and Z, of type USER, RECElIVER, and NETWORK,
respectively. Then the three nodules are instantiated with the
i ndi cated nodul e bodi es. Finally, the instantiated RECEIVER
nodule is connected to the instantiated USER and NETWORK
nodul es.

Figure WVI-6 gives the Estelle specification of the
RECEI VER _BODY declared in Figure VI-5. This shows how Estelle
al l ows description of nodul e behavior with an extended FSM The
nodul e contains a type, some constants, and a few variabl es.
Two states are declared: |IDLE and AK _SENT. The initialization
section should be self-explanatory, except that the tinme period
for the delay for transition t5 begins ticking imrediately
because that transition is initially enabled (because transition
t5 is enabl ed whenever the FSMis in the IDLE state).

The transition section is organized by state. When an
DATA | NDI CATION interaction arrives on channel N, transition t1l
is triggered, causing a DATA INDI CATION to be sent on channel U
and also incrementing ak_no. The transition does not change the
explicit state of the FSM Whenever the ak no is greater than
zero, additional transitions are enabled, but nay be delayed.
For exanpl e, transition t2 is enabled after the first

DATA | NDI CATI ON and st ays enabl ed unti | t he fifth
DATA | NDI CATION (when t2 is disabled) or until the delay
interval expires (in which case t2 is fired). This FSM al | ows

for up to eight nessages to be received before an acknow edgnent
is sent, but will acknow edge a fewer nunber of nessages when a
certain period of time passes wthout eight nmessages being
received. If no nessages arrive in the inactive period, then an
acknow edgnent is sent (with an ack no of zero) and the FSM
spont aneously noves fromthe state AK SENT to | DLE

- 98 -

Estelle is supported by a nunber of tools, such as
translators, run-time environnents, graphical sinmulators, and
syntax-directed editors. [DI AZ89] Estelle has been used to
specify a range of conmmunications protocols, including the
I nternational standard for distributed transaction processing.
Al though Estelle appears to offer reasonable neans for
speci fying conmunications protocols, a nunber of enhancenents
have been proposed to increase Estelle’'s potential as a
di stributed systens design | anguage.

FIFO queues are the only nmethod currently allowed by
Estelle for inter-nodule conmunication. Sij el massi reconmend
adding a rendezvous to Estelle so that processes on the sane
node can interact via shared variables. [SIJE92] Si j el massi
al so proposes naned queues, exception handling, conposition of
i nput condi tions, and nor e advanced gueue oper ati ons.
Chanberl ain proposes four Estelle enhancenents intended to
extend its scope of application to general, distributed systens.
[CHAMB1, CHAMB2] He cites the need for broadcast communi cati ons,
n-way synchronization, a single-state history mechanism (for
exception handling), and a strict, real -time constraint
mechani sm (to all ow specification that an action must occur by a
given tine).

In summary, Estelle extends Pascal wth constructs for
defining hiearchically-structured, conmunicating FSMs. Estelle
specifications are operational in nature; SO a program
i npl enmenting an Estelle specification is easy to build; and, in
fact, several Estelle-to-C and Estelle-to-C++ translators exist.
Enhancenents to Estelle mght make the |anguage nore suitable
for specifying distributed systens.

E. Language O Tenporal Ordering Specification (LOTQS)

LOTOS nerges two concepts (described in section V):
tenporal ordering and abstract data types. [1SO87, MJIN91]
Tenporal ordering, based on a nodification of the calculus of

- 99 -

type Bitstring is
sorts Bit, BitString
opns
0, 1. -> Bit
String : Bit -> BitString
Append : BitString, Bit -> BitString
Prefix : Bit, BitString -> BitString
Concatenate : BitString, BitString -> BitString
eqns
forall x, y: Bit, s, t: BitString
of sort BitString
Prefix(y, String(x)) = Append(String(y), X);
Prefix(y, Append(s, x)) = Append(Prefix(y, s), X);
Concatenate(t, String(x)) = Append(t, Xx);
Concat enate(t, Append(s, x)) =
Append(Concat enate(t, s), X);

endt ype
Figure V-7. Exanple LOTGOS Type Defined Using ACT- ONE
[MUNI, p. 16]
comuni cating systems (CCS), is wused to describe process

behaviors and interactions. Abstract data types, as defined by
the ACT-ONE | anguage, are used to specify data structures and
their operations. These two parts of LOTOS are independent and,
in theory, a |anguage other than ACT-ONE (Zed, for exanple),
could be used to describe ADTs in LOTOS. Sone researchers point
out, however, that replacing ACT-ONE would require extensive
nodi fications to the CCS portion of LOTCS. [LOGR38]

A LOTGOS behavi oral system consists of nested processes that
interact via a multi-way rendezvous, where processes nmay
wi t hdraw before a rendezvous occurs. Message- passi ng protocols
have been defined to allow the LOTOS rendezvous nechanism to be
I npl enented between distributed processes. [SIST91] Because
LOTOS fornmed the basis for explaining tenporal ordering in
section V, the discussion presented here will concentrate on the
ADT portion of LOTOCS and then on LOICS tools and on the
application of the |anguage.

ACT-ONE provides an algebra for specifying LOTOS data
types. [MUN91] Because ACT-ONE uses an algebraic notation to

- 100 -

describe ADTs, sone termnology is different than described
earlier for ADTs specified with FOQL. For exanple, LOTOS data
types are called sorts and operations on data types are called
relationships. Al LOTOS operations are total functions. \Wen
a function has only two argunments, LOTOS permts either prefix
or infix notation. In general, one builds a package contai ning
several sorts, and uses these sorts as argunent and result types
in operations. Such a package of sorts and operations is called
a type in LOTCS. A LOTOS type also includes equations that
define invariant relations anong the sorts and operations in the
type. Perhaps this can best be expl ained using an exanpl e.

Figure V-7 gives a LOTOS description of a Bitstring type.
BitString uses two sorts, Bit and BitString. Six operations are
al so defined. The operations 0 and 1 each return a Bit. The
operation String casts an argunent of Bit into a result of
BitString. Prefix adds a Bit to the front of a BitString and
Append adds a Bit to the end of a BitString. Concatenate joins
two BitStrings to form a BitString. Four equations give the
axionms of the operations. This definition should be famliar to
the reader from the earlier description given of ADIs (refer to
section V).

LOTOS types may be built from other types by using an
i mport mechani sm Paraneterized (i.e., generic) types can also
by defined. LOTOS includes a pre-defined library of data types,
for exanple, Boolean, Natural Nunber, NonEnptyString, Bit, and
Cctet. LOTCS ADTs suffer from several problens. For one, LOTCS
does not support partial functions; thus, lacks arbitrary
preconditions for operations and |lacks the ability to constrain
a sort to define subsorts. LOTCS al so does not support the use
of unspecified (i.e., generic) data algebras, so a specific
al gebra cannot be substituted into a |arger specification.

Sonme tools have been inplenmented to support the LOTOS
| anguage. In section V, for exanple, a tool for translating

- 101 -

Specification Design i Test I

Specification Language = W Functional Test Generator
9 Design Modeling Langauge

Specification Analyzers . Performance Test Generator
Design Generator

Design Editor

J Design Library System Test Generator

Specification Library

9 Correctness Analyzers
Schedulability Analyzers

yi

i b o

9 T Design Configuration Language
Design Configurator
Simulator

Figure VII-1. An ldealized Design Environnent

LOTOS processes into C functions was described. A LOTOS
interpreter, inplemented in YACC/LEX, C, and Prolog, also
exi sts. [LOGR88] The interpreter enables an analyst to: 1)
recogni ze whether a given sequence of interactions is allowed by
a specific LOTOS specification, 2) generate randomy chosen
sequences of interactions from a LOIOS specification, 3)
generate sequences from a specification under user guidance, and
4) simulate a specification, step-by-step. LOTCS specifications
cannot be translated easily into efficiently executing prograns.
LOTOCS allows infinite recursion, permts non-determinism and

enables the definition of unbounded axi ons in ADTS. To use the
i nterpreter at al |, a specification nust be carefully
constructed. Interpreted LOTOS specifications cannot be used in

lieu of a hand-coded inplenentation, yet LOTOS specifications

- 102 -

cannot be readily converted into hand-coded inplenentations
because tenporal ordering is used (see section V).

LOTOS has been appl i ed. Sever al oSl pr ot oco
specifications are witten in LOTCS O her applications of
LOTOS i ncl ude speci fications for conput er-i ntegrated

manuf acturing architecture [BIEMB6] and communication security.
[MUN91] More applications of LOTCS can be expected to occur.

VII. Design Environnents

The preceding sections of this paper discussed the nature

of software design, identified sone key problens facing
designers, and described a variety of formal nodels and nethods
proposed to help designers. In this section, the foregoing
di scussions are integrated. First, an idealized design

environnment is proposed. Then, design environnments investigated
by four research groups are described and eval uat ed.
A An ldealized Design Environnment For Real -Tine Systens

An idealized design environment (IDE), illustrated in
Figure WVII-1, nust support three activities: specification,
design, and test. For specification, the IDE should help the
designer to find, eval uat e, and correct any om Ssions,

anbiguities, and inconsistencies in the informal requirenents.
In addition, the IDE nust offer help with the specification of
timng constraints. Three tools are needed to help acconplish
t hese obj ecti ves.

A specification |anguage gives the designer a nodel for
representing formally a systenis functional and timng
requirenents. The | anguage should be convenient to use, should
be a nmedium for communication between the designer and the
requi renents analyst (and, if possible, between the analyst and
the wuser), and should be based on a formal nodel that 1is
anenable to analysis. Although nmultiple forns of analysis m ght

- 103 -

be required, a single specification |anguage should suffice if
at all possible. Multiple translations of the specification
should be avoided, even when provided wth autonmated
transl ators, because errors can creep in anong the various
representations.

The |IDE should offer specification analyzers that can
identify and evaluate requirenents errors. The exact nature of
such anal yzers is an open area for research

A specification library should be included in the IDE to
support reuse of formal specifications. Such a library m ght
al so be used to record historical data on specification errors
as they are encountered and resol ved.

For design, three categories of tools are needed.
Generation tools can help a designer produce a concurrent design
froma formal requirenments specification; analysis tools enable
a designer to assess the correctness of a proposed design;
simulation tools allow a designer to exercise a proposed design
under varying loads and in alternative configurations. Each
category of tools is considered further bel ow.

The key to design generation is a design nodeling |anguage
(DML) and the underlying nodel and representation that support
t he | anguage.

[T] he nost inportant conponent [in making real-tine
systens easier to understand] is the devel opnent of
t he underlying nodel s used to represent the systens.
Such a nodel should ideally possess formal semantics
that allow a system s correctness to be verified. At
the sanme time, it should represent the software and
real-world entities in a way that feels natural to
system desi ghers. [BIHA92, p. 26]
The DM. and wunderlying nodel should be consistent with the
design nmethod used. This wll enable the designer to think and
act in famliar terns. The representation wunderlying the
| anguage and nodel nmust support ef ficient anal ysis and

- 104 -

simulation without requiring additional translation (unless such
translation is autonmatic).

A design generator should provide autonmated assistance to
convert a formal specification into a concurrent, and possibly
di stributed, design. A design generator should apply the rules
of a design nethod when generating the design. The generator
should consult with the designer for guidance as the design is
created. The resultant design should show the structure of the
software, as distribution units, tasks, and information hiding
nodul es, and should generate a skeleton for task behaviors and
nodul e definitions. A design editor should enable the designer
to nodify the design and to add the details needed to conplete
the generated skeletons. An editor should also allow a designer
to enter a design w thout assistance fromthe generator.

A design library can support the generation of task and
nodul e skeletons. A library, coupled with a search program and
the design editor, mght also support the reuse of previous

desi gns.
Once a design exists, analysis is needed. I f possible,
automated correctness analyzers should be enployed. Appr oachs

to design verification are the subject of nuch current research
Some approaches rely an exercising the design; others attenpt to
mat hemati cally evaluate the design. Exercising a design, nuch
as testing, can detect errors, but cannot guarantee the absence

of errors. On the other hand, analyzing conplex designs for
real-tinme systens can be nmathematically difficult, | abor
intensive, error prone or conputationally infeasible. For

analysis, a design nust wusually be translated into a fornal
nodel that reduces conplexity. The translation process can
alter the design so that the resulting analysis nmght not apply
to the actual system design

Schedul ability analyzers using rate nonotonic analysis can
be applied to concurrent designs. The designer nust, however,

- 105 -

supply accurate information to generate reliable results.
Having a schedul ability analyzer available can allow the design
to be assessed iteratively as nore detailed information becones
avai |l abl e. Schedul ability analyzers should also enable the
designer to specify event threads for which response tine
estimati ons are needed.

Wiile analysis can help the designer evaluate the
correctness and schedulability of proposed designs, simulation
allows a design to be exercised under l|load, and in a range of
configurations. To support sinulation, the IDE should contain a
design configuration |anguage (DCL), a design configurator, and
a simulator. The DCL lets the designer allocate distribution
units to nodes, specify the performance characteristics of the
nodes and of the conmunications |inks between them and to
constrain any system resources. The design configurator
analyzes DCL files and the design nodel and then generates a
design simnulati on nodel. The sinmul ator exercises interactively
the configured nodel. Interactive execution enables a designer
to investigate the run-tinme behavior of a proposed design. The
si mul at or shoul d det ect correctness vi ol ati ons, record
performance characteristics, and nonitor resource usage. The
desi gner should be given conplete freedom to alter a
configuration while the sinmulation is running, as well as to
halt the sinulation and exam ne the state of the system

Al'l analysis and simulation should operate from the design,
as specified by the DML and underlying nodel. A designer should
not be required to produce different nodels of the design for
each purpose. Researchers are currently investigating
approaches to acconplish these objectives.

The final activity that an IDE should support is testing.
An | DE should allow automation-assisted test generation from a
formal requirenents specification. Three types of tests should
be generated: functional, performance, and system Proper test

- 106 -

SARA

Methodology System
Tools Support
‘ Tools
| | Utilities
f‘ _‘ Library
(, Stere) (, Behavor
v 7 Comment
News
Structure Language (SL) System Attribute-based Model
(SAM)
Module Interface Description Graph Model of Behavior (GMB)
(MDL) Tool
Translator
Linker
PL/1 Processor
Simulator
Analyzer

Figure VII-2. SARA Design Environment [ESTR86, p. 294]

generation can enable an intelligent and cost effective testing
canpai gn. The generated tests can be used by software test
teanms to support integration and system testing. In addition,
since the tests can be nade available during software design,
the tests can guide the designers analysis and sinulation of
design alternatives. Methods for generating appropriate
software tests are currently the subject of nuch research

Beyond the specifics covered so far, a few desirable
qualities for an IDE can be nentioned. The |anguages avail abl e
in an IDE (i.e., the specification |anguage, DM, and DCL)
should be famliar and confortable to the designer. | f
possi bl e, these |anguages should support existing design
met hods, rather than force the designer to learn conplex, new
approaches. A balance is required between two extrenmes. On one
hand, since current design nethods appear to lack rigor and
formal semantics, the ability of an IDE to generate, analyze,

- 107 -

and sinmulate designs mght prove too limted. On the other
hand, introducing a high degree of rigor and formality wll
likely require new design nethods. Such new nethods m ght prove
time-consumng to learn, difficult to apply, and limted in
scope. A successful approach mght start from existing design
nmet hods and add, unobtrusively, the rigor and formality needed
to support design generation, analysis, and sinmulation.

The tools in an IDE should be easy for a designer to use.

If these tools are not easy to use, then they will not be used.
(OF course, ease of wuse can be traded to sone degree for
i nprovenents in effectiveness.) IDE tools should also be
efficient. | DEs should provide, alnpst as a side effect,

traceability frominformal requirenents, to formal requirenents,
to tests, and to the design

The idealized |IDE, then, nust achieve sone difficult
obj ecti ves. The reader probably understands that no such |DE
exi sts. Researchers have, however, i nvestigated design
environnments for a nunber of years. Below, four proposed design
environnments are descri bed and eval uat ed.

B. System ARchitects Apprentice (SARA)

The System ARchitects Apprentice, SARA a join devel openent
of researchers at UCLA and the University of Wsconsin, provides
an interactive environnent for nodel i ng, anal yzi ng, and
simulating designs for concurrent systens. [ESTR86] SARA' s
goals are six: 1) to allow reasoned consideration of hardware
and software tradeoffs, 2) to support building nodels of a
systenmis operating environnent, 3) to separate structure from
behavior, 4) to enable early detection of design flaws, 5) to
facilitate conposition, inplenentation, and testing of designs,
and 6) to assist individual designers in a manner nost
confortable to them

- 108 -

The SARA environment conprises two categories of tools, as
illustrated in Figure VII-2. The main SARA tools allow
designers to nodel structure and, separately, behavior. Usi ng
the Structure Langauge (SL) designers can specify a fully
nest ed, hi er ar chi cal structure of nmodul es and nodul e
I nt erconnections (via sockets). The Modul e Interface
Description (MD) tool provides access, via program code,to
naned, design resources. Ada, for exanple, can be a
satisfactory M D | anguage.

Using the behavior tools designers can specify, analyze,
and simulate a design. The underlying behavioral nodel is based
on the UCLA G aph Mdel of behavior (GvB).> SARA uses a forma
GWB to nodel control and data flows, and the interpretation of
data types. To nodel control, designs are specified with nodes
and control arcs in a manner simlar to Petri nets. The data
dormain is nodel ed using processors (i.e., transforns), data sets
(i.e., data stores), and data arcs (i.e., data flows). SARA' s
data domain nodel represents data flow diagrans. In the
interpretation domain, SARA can nodel the data types of data
sets and of algorithnms in node-processor pairs. |n essence, the
interpretation nodel is simlar to a data dictionary and
associ ated m ni-specifications.

Once a behavioral and structural nodel are specified for a
design, SARA allows the designer to investigate a range of
i ssues. For exanple, the behavioral nodel can be nerged with an
environnmental nodel, after which sinulation experinments can be
conduct ed. The SARA simulator is interactive and includes a
range of nice features, plus built-in checking for specific
design flaws. O, the control and data graphs can be anal yzed
to detect contention for resources. The designer mght also
blend in the interpretation nodel to attenpt validation of the

> The UCLA G aph Mddel of behavi or was not covered in section
V. Suffice to say that the GvB, with appropriate restrictions,
I's equivalent to a Petri net nodel. [ESTR86, p.294]

- 109 -

entire design. Consi der further some of the dynam c nodeling
capabilities of SARA

The GWB nodel enables the designer to represent explicitly

contention for active and passive resources. Once encoded in a
design, the contention 1is nodeled in SARA analyses for
correctness and for perfornmance. To assess correctness, a
control flow analyzer builds a reachability graph. Si nce these
graphs can grow quite large (or even be infinite), a strong
reduction algorithm is used to reduce the state space wthout
sacrificing too nuch analysis. The reduction algorithm conpacts
sequential paths and pat hs guaranteed never to deadl ock.

To assess performance, the GVB sinul ator derives stochastic
queui ng nodel s from the design specification. Using the queuing
nodel, SARA can estimate, for each nodeled resource, the
foll owi ng average values (within a known confidence interval):
utilization, queue size, and waiting tine. SARA can also
determ ne distributions for queue size and waiting tine.

The diverse tool set provided by SARA is presented through
a coherent, single user interface. Unfortunately, the syntax of
the various |anguages appear difficult to nmaster. Anot her
shortcom ng of SARA is the large, cunbersonme, and conplex nature
of the software. A designer nust carefully consider the goals
of a particular study and build nodels appropriately because
SARA supports a range of evaluation nethods. SARA could benefit
frominclusion of a expert systemto guide designers through the
SARA design process. A graphical interface could al so nake SARA
nore approachabl e. As with many tools described in the
literature, SARA needs inproved neans to nodel tinme-constrained
systens and to avoid the conbinatoric explosion problem faced
when anal yzing realistic designs.

C. Met hodol ogy for |ntegrated Design And Sinul ation (M DAS)

Bagrodia and Shen describe a design nethodology for
integrated design and simulation (MDAS) that differs sharply

- 110 -

from SARA. MDAS "...supports the design of distributed systens
via iterative refinenent of hybrid nodels”. [BAGR91l, p. 1042] A
hybrid nodel is a partially inplenented design; some conponents
conprise sinulation nodels, others consist of operational code.
The main purpose of MDAS is to assess the average performance
traits of a design. M DAS increases nodeling realism by
representing interrupts and distributed desi gn conponents.

M DAS devel opnent begi ns W th construction of a
di screte-event sinulation nodel that the designer transforns
over time to an operational system Design conponents are
nodel ed using a concept called partially inplenmented performance
speci fications (PIPS). PIPS are inplemented using an existing
simul ati on | anguage, such as MAY or Misie, but with extensions
to allow interface to conponents <coded in a high-Ileve
progranmm ng | anguage. Much attention is given to interleaving
simuated and |ive execution so that interrupts can be properly
nodel ed, especially since MDAS supports distributed execution

of nodel s.
Sone shortcomngs to MDAS are readily apparent. No
support is provided for analysis of correctness. The

performance nodeling available with MDAS can only predict
average behavior. In fact, because MDAS allows hybird
nodeling, the sinmulation hardware nust be identical to, or
scal able to, the hardware on which the real systemw | execute,
if an accurate performance prediction is needed. M DAS requires
extension to allow nodeling of hard, real-tinme systens.
D. PROTOB

PROTOB ainms to facilitate executable specifications for
| arge-scal e, event-driven systens. [BALD91] The intent of
PROTOB is twfold: 1) to enable behavioral prototyping and
performance evaluation of a software specification and 2) to
support automated translation of a specification into an
architecture design. To acconplish these objectives, PROTOB

- 111 -

provides tools for nodeling, application generation, and
enul ati on.

PROTOB includes two specification |anguages, one graphic,
one textual, that describe formally object behavior. The
specification |anguages are based on a form of high-level Petri
nets, called PROInets, integrated with extended data flows and

hi gh-1 evel programm ng | anguages. A PROTOB specification
enbodi es an executabl e, object nodel, where each object
encapsul ates a PROTInet. PROTOB objects can be constructed,

hi erarchically, from other PROTOB objects, and can conmmunicate
wi th each other via nessage passing.

Application generation tools, part of a conplete CASE
envi ronnment supporting PROTOB, translate PROTOB specifications
into an executable program either centralized or distributed,
i mplemented in C or Ada. PROTOB specifications can be
translated into a sinmulator or an enulator. The sinul at or
version can exercise the system while including the nodeling of
tinme. The enulator version is a prototype that nust be
Integrated with an actual environnent. Sinul ations are used to
evaluate the performance of a specification, while enulations
are used to evaluate control behavior. Both types of dynamc
nodel can be generated from the sanme PROTOB specification, and
both are executed by an underlying inference engine, tailored
especially for PROInets. To see how this mght be achieved,
consider the details of a PROTOB object specification.

Each PROTOB object is defined with a script; a script is
sinply a text file wth definitions of token types, |ocal
vari abl es, and actions associated with each PROInet transition.
The variables and actions are witten in C or Ada, depending on
the target |anguage of the application. Each script, in detail
cont ai ns:

+ token types, structured nessages (like Ada records);
¢ conmuni cation types, used to connect objects;

- 112 -

¢+ object paraneters, which nust be scal ar val ues;
¢+ |ocal variables, which can be initialized,
¢+ declaration of external functions (in the target |anguage);

¢ transition defintions, wth optional

predi cates and actions (in the INITIALIZE TASK STATE
target | anguage) and opti onal LOOP
priority; WAIT FOR GO SIGNAL
¢ optional initialization actions; and READ INPUT MESSAGES
¢+ optional final actions. PERFORM APPLICATION
PROTnet transitions are responsible for CODE
introducing timng constraints into the| [WRITEOUTPUT
MESSAGES
nodel . Each transition can include,

optionally, delayed release and del ayed Figure VII-3. A Mrs
firing paraneters. Task Wapper

PROTOB appears to provide a useful
design environnent for distributed, real-tine systens. A nunber
of successful applications of PROTOB are reported, e.qg.
manuf acturing systens, nonitoring systens, and comrunications
protocol design, with conplexity ranging from 10 to 70 different
objects with up to 50 transitions each. [BALD91, pp. 829-830]

The enphasis of PROTOB is on specifying and exercising a
system not on analysis. Thus, as with other such approaches,
errors can be detected, but the absence of errors cannot be
shown.

E. Mars

Mars, a product of researchers at the Technical University
of Vi enna, enconpasses a prototype devel opnent support
environnment for maintainable, real-tinme systens. [POSP92] The
aim of Mars is to facilitate construction of hard-real-tine
systens that are understandable and nmaintainable, as well as
correct and tinely. Mars supports the approach of pre-run-tine
scheduling. An off-line scheduler produces, if feasible, a task
schedule and allocates nessages to bus slots (Mars supports

- 113 -

desi gn of

mul i t processor

MAXIMUM

TIME systenms connected by

Object
Code COMPILER

Source
Code

a high-speed bus) in
a manner that neets
all synchroni zation,
timng, and
conmuni cat i on

] constraints. In a

Task P EDITOR very controlling
Specification EDITOR i

p fashion, the Vienna

researchers attenpt

to elimnate every

USER INTERFACE sour ce of

uncertainty so that

Figure VI1-4. Mars Progranm ng Mars designs are

Envi ronment [POPS92, p.38] deterministic and
conpletely under a

designer’s control. They even, for exanple, avoid the problens
posed by instruction caching and pipelining in nodern,
hi gh- perf ormance ni croprocessors. They avoid this by refusing

to use them - every target processor in their systemis a fixed
instruction Mtorola 68000. Each board in the network consists
of two processors: one for applications and one for |owlevel

di rect - menory access in support of bus communi cat i ons
processi ng. Every operation in t he net wor k happens
synchr onousl y. The only system interrupt is a clock tick to
mark the boundary of CPU and bus slots. Al t hough a nessage

passing paradigm is wused for inter-processor conmunications,
each nessage gets a dedicated tinme slot on the bus and each task
gets a cyclic execution slot on its local processor. Al of
this is predetermned by the off-line scheduler. Thi s

- 114 -

background is inportant to understand before the software design
approach and environment are di scussed.

Every task in a Mars design is specified in a real-tine
| anguage, Mddula R, derived from Mbdula 2. The skel eton of each
task consists of a wapper logic that is identical for every
task in a Mars design. The task skeleton is shown in Figure
VI-3. Each task |oops forever performng four actions: wait
for the start signal (i.e., the task’s schedule slot to arrive),

read al | I nput nmessages, perform application specific
operations, and wite any output nessages. The application
specific operations are describe in Mdula R Modula R

restricts Modula 2 by elimnating GO TO, abolishing recursion,
and banning dynam c nenory allocation from the heap. Al'l of
these operations would introduce uncertainty into a task's
timng characteristics. Modula R al so adds sone primtives to
Modul a 2. The additions, scopes, markers, and |oop sequences,
let a programmer express know edge about infeasible paths.
Addi ng this neta-know edge, unknown to all but the programer,

can tell Mars that a program will |leave a control structure
within a finite bounds. The Mars conpiler system can anal yze
program code (when augnented appropriately with markers, |oop

sequences and scopes) to determ ne a task’s tim ng behavior.
After a program is analyzed, the source code is displayed
in an editor wth each control construct annotated with an
estimated program execution tinme. The total execution tine for
the task is conputed from the sum of the calculated tine,
coupled with the systenmis understanding of tinme for repetitive,
overhead operations (e.g., context switching and nessage
passi ng) . Through a novel concept, called tine editing, the
programmer can suggest different hypothetical maximum tines
where she thinks that the tinme can be inproved through code
tuning or by choosing, ultimately, a nore efficient algorithm

- 115 -

Once the progranmer has overridden the analyzer’s estimates, the

programmer’s figures will be used in all further cal cul ations.
A general layout of the Mars devel opnent environment is
shown in Figure VII-4. Mars supports either top-down or

bottomup design as appropriate to the problem and to the
designer’s w shes. Mars allows designers to incorporate
execution timng considerations into the design from the start.
(OF course, these are timng budgets assigned to program
el ements, not tinme constraints entered from a requirenents
specification.) After a timng data base exists for the tasks
in the design, an off-line scheduler can allocate tasks to
processors, can arrange synchronized access to resources, and
can budget bus bandwi dth for inter-node nmessage comruni cati ons.

As the reader can see, a variety of approaches exist to

supporting real-tine system designers wth automation. Each
approach as described above has strengths and weaknesses, and
each fails to achieve all the characteristics of the |IDE
detailed at the beginning of the section. Al t hough sone of

these environnents offer useful ai ds, none has achieved
successful application in the design of large, conmercial,
real -time systens.

VIIl. Conclusions

Thi s paper described the purpose of design as threefold: 1)
to discover the structure of a problem 2) to create outlines,
or architectures, of a solution, and 3) to evaluate the
solutions against the problem For designers of software
systens, these goals can be translated into sonme specific steps.
First, informal software requirenents specifications nust be
reviewed and anal yzed using sonme systematic nmethod. Second, the
set of software conponents, and relationships between them
necessary to nmeet the requirenents nust be described in enough

- 116 -

detail to permt accurate evaluation and inplenentation. The
third purpose of design, evaluation, is often handled poorly for
software systens. Typically, software designs are evaluated
only during systemtesting.

For designers of real-tinme, software systens, functional
requirenents are augnmented by timng constraints. Such
real -tinme constraints nust be satisfied for a software systemto
be considered correct. The timng constraints generally fall
into two classes: response-tinme for specific events and system
t hroughput in the face of a peak | oad.

Wen a real-time, software system is also distributed

several additional concerns arise. Processes and data nust be
all ocated anbng nodes in the system An inter-node nessage
passi ng paradi gm nust be defined. A nmeans nust be devised to

integrate the inter-node and intra-node nessage passing nodels.
The physical characteristics of inter-node conmunications paths

must be accounted for. | nconpati ble data representations nust
be reconcil ed. System security issues mnmust be identified and
resol ved.

The problens recounted above reveal a nunber of chall enges
for researchers who seek to inprove the lot of software
designers, particularly designers of distributed, real-tine
sof t war e. Designers need nethods to detect and resolve flaws
contained in software requirenments specifications. Desi gners
and specifiers need inproved nechanisns for specifying software
system timng requirenents. Designers could benefit from
approaches to bound the nmaxinmum conmunications delay and
residual error rate between nodes in distributed, real-tine
systens. Designers would profit from an accepted paradigm wth
wel | -defined semantics, for inter-task comrunication anong
distributed, real-tine nodes. Designers could produce nore
effective designs if assisted by nethods to enable dynamc
eval uation of alternative designs.

- 117 -

The current state-of-practice in real-tine software design
appears to rely on nethods developed two or three decades ago
A real-tinme designer partitions software into nodules and then
perhaps with the aid of a pre-run-tine scheduler, schedules the
nodul es to execute in a specific, cyclic order that neets al
synchroni zation and timng constraints. The resulting software
is often difficult to understand, to nmintain, and to expand.

Newer , concurrent desi gn appr oaches enphasi ze
understandability, maintainability, and expandability at sone
cost in determnistic performance. Recent devel opnment s
concerning rate nonotonic scheduling theory promse to enable
concurrent designs to achieve effective real-time performance.
Currently, however, effective use of rate nonotonic analysis
requires support from underlying operating system nechanisns
that are not yet inplenented w dely.

This paper found that nost design approaches used by

practitioners lack a fornmal semantic nodel. Wthout such a
nodel , anal yzing and evaluating alternative designs will renain
difficult. For this reason, nuch of the current research

surrounding software specification, design, and evaluation
i nvestigates the application of formal nopdels and nmethods. In
general, formal nodels for design can be viewed as behaviora
nodel s or structural nodels. Behavioral nodels include finite
state automata, Petri nets, tenporal ordering, and executable
specifications. These nodels enphasize the control aspects of a
design. Behavioral nodels usually possess several shortcom ngs:
1) they do not, generally, include the notion of tinme, 2) they
are subject to state explosions which can nmake analysis
conputationally infeasible, 3) when they are augnented wth
hi gher-1evel constructs to inprove notational convenience, they
lose sone of their analytical properties, 4) they often
i ncorporate variations to support specific needs, and 5) they
sonmetinmes require the designer to learn a difficult syntax.

- 118 -

Structural nodels include abstract data types, axionmatic
nmet hods, and tenporal |ogic. These nodels enphasize the static
properties of a design and can provide a basis for proving that

an inplenmentation exhibits the desired properties. Structura
nodels share a nunber of weaknesses. Witing fornmal
specifications is a difficult, |abor intensive activity. Sone

structural nodels cannot be used to describe the behavioral or
correctness properties of sequential tasks. When sequenti al
tasks can be described, nost formal nodels do not account for
specification of timng constraints.

Application of formal nodels, behavioral or structural,
requires a syntactic nodel anenable to wuse by designers.
Several research efforts aimto build a suitable syntax on the
foundation of formal nodels. Communicating Sequential Processes
(CSP) led to several |anguages that, while never gaining a
foothold wth practicing designers, influenced international
standard specification |anguages such as Estelle and LOTGCS.
Estelle extends Pascal with a formal nodel of comunicating
finite state automata. The result s an understandable
speci fication | anguage that perhaps demands the inclusion of too
much inplenmentation detail. LOTOS nerges a tenporal ordering
nodel with an abstract data type (ADI) nodel to produce a
| anguage capable of specifying both behavior and structure.
Unfortunately, LOTGS, while a powerful specification |anguage,
enbodi es several disadvantages. For exanple, the LOTOS ADT
| anguage does not support partial functions nor arbitrary
preconditions for operations. Also, LOTOS specifications cannot
be translated easily into efficient inplenentations.

A nunber of anbitious research projects attenpt to conbi ne
a range of tools to conpose software design environnents. This
paper presented an idealized design environment (IDE) and then
exam ned four proposed design environments against the IDE. The
I DE contained tools for specification (including a |anguage,

- 119 -

anal yzers, and a Ilibrary), for generating, analyzing, and
simulating designs, and for generating tests (functional
performance, and systemn). Design generation tools include a
design nodeling |anguage, a design generator, a design editor
and a design Ilibrary. Design analyzers were included for
eval uating correctness and schedulability. Design simulation
tools included a design configuration |anguage, a design
configurator, and a simulator.

Anong the design environments discussed in this paper, SARA
and PROTOB contained the richest set of tools. SARA exhibits
several shortcom ngs. The syntax of various SARA | anguages
appears difficult to master; the tools set is large and
cunbersone; the wuser interface is not very friendly;, tine
constraints are not nodeled; SARA behavioral nodels tend to
suffer state explosion; the designer nust build separate SARA
nodel s to evaluate different aspects of a design

PROTOB overcones nany of the shortcom ngs of SARA but
sacrifices sone capabilities. Mai nl y, PROTOB cannot be used to
anal yze a design for correctness; a design can be exercised,
however, and errors can be detected. In addition, PROTOB
designs can be sinmulated and can form the basis for generating
i npl enmentations in a high-level |anguage such as C or Ada.

The design environnent presented by Mars attenpts to codify
a determnistic design within a synchronous hardware/software
system Mars designs are to be built from identical, sinple
har dwar e conponents (i.e., high-speed buses and Mtorola 68000
processors) and software conponents (i.e., Mars tasks). The
designer’s main job is to specify application specific logic
wrapped with Mars tasks and to hone the timng of that logic to
neet the performance objectives of the application. To
successfully apply Mars a designer nust work within the frane
provi ded; thus, Mars designs cannot generally be noved to other
har dwar e and software environments.

- 120 -

O the four design environnments studied, MDAS was nost
limted. The main goal of MDAS is to enable sinmulation of a
design and then to allow that sinmulation to be progressively
el aborated into an inplenentation. M DAS enabl es prediction of
average performance, but not of worst-case perfornmance. M DAS
provi des no support for analysis of correctness. As with Mrs,
M DAS requires that the sinulation hardware be identical to the
har dware on which the real systemw || execute.

These representative design environnents, SARA, PROTOB,

Mars, and M DAS, collectively illustrate the immturity of the
current state of research regarding software design; however,
Some avenues appear prom sing. A design environnment should
begin wth a nodern design nethod that is known to
practitioners. Tools added to the design environnment should

work from a syntax famliar to designers. A design environnent
must include sonme neans for identifying and repairing the
anbiguities, omssions, and inconsistencies present in infornal
requi renents docunents. In nost cases, the neans for achieving
these ends requires translation of informal requirenments into a
formal, requirenents nodel. Tools should be included in a
design environnment to help a designer create a design from a
formal , requirenents nodel

For nost conplex designs, tools to analyze functional
correctness appear conputationally infeasible; thus, an enphasis

should be placed on design exercisers and sinulators. Such
exercisers wll require an underlying semantic nodel of
essenti al design details. A nethod to analyze the

schedul ability of a design nust also be included in any design
envi ronment .

Met hods exi st to generate concurrent desi gns for
distributed, real-tine systens. The wuse of such nethods is
inhibited by an inability to predict the worst-case performance
of the resulting designs. (Rate nonotonic scheduling theory

- 121 -

shows potential to overcone this barrier.) In addition
alternative designs are often not considered because no neans
exi sts to eval uate one design agai nst another. (Such eval uation
Is particularly difficult for concurrent designs.) Usual |y,
designers nust await system testing to discover design flaws
that mght require major redesign and re-inplenentation of
sof t war e. Finding and correcting design problens as early as
possible should inprove the quality and reduce the cost of
di stributed, real-tine software.

| X. References
A General Concepts of Real -Tinme and Di stributed Systens

[AMBL92] A L. Anbler, et al., "Operational Versus
Definitional: A Perspective on Programm ng Paradi gns",
| EEE Conputer, Septenber 1992, pp. 28-43.

[BIHA92] T. E. Bihari and P. Gopinath, "Qbject-Oiented Real -
Ti me Systens: Concepts and Exanpl es", | EEE Conputer,
Decenber 1992, pp. 25-32.

[GOVA86] H. Gomma, "Software Devel opnent O Real -Tinme Systens”,
Cormmuni cati ons of the ACM July 1986, pp. 657-668.

[KLEI 85] L. Kleinrock, "Distributed Systens", [EEE Conputer,
Novenber 1985, pp. 90-103.

[NATA92] S. Natarajan and W Zhao, "Issues in Building Dynamc
Real - Ti me Systens", [|EEE Software, Septenber 1992, pp.
16- 21.

[SHAT84] S. M Shatz, "Conmunication Mechani snms for Programm ng
Distributed Systenms", [|EEE Conputer, June 1984, pp. 21-
28.

[STAN82] J. A Stankovic, "Software Communi cation Mechani sns:
Procedure Calls Versus Messages", [EEE Conputer, Apri
1982, pp. 19-25.

[STAN8B] J. A Stankovic, "M sconception About Real -Tine

Computing - A Serious Problemfor Next-Generation
Systens", | EEE Conputer, Cctober 1988, pp. 10-19.

- 122 -

[SuvwB9] R C Sunmmers, "Local-area D stributed Systens", [BM
Systens Journal, Vol. 28, No. 2, 1989, pp. 227-240.

B. Schedul i ng and Performance of Real -Tine and Di stri buted
Syst ens
[CHU91] W W Chu, et al., "Task Response Tine For Real -Ti ne

Distributed Systenms Wth Resource Contentions", |EEE
Transacti ons on Software Engi neering, October 1991,
pp. 1076-1092.

[EIND87] P. Ein-Dor and J. Feldnesser, "Attributes O The
Performance O Central Processing Units: A Relative
Perf ormance Prediction Mdel", Conmmunications of the
ACM April 1987, pp. 308-317.

[FAUL8B8] S. R Faulk and D. L. Parnas, "On Synchronization In
Har d- Real - Ti me Systens", Communi cations of the ACM
March 1988, pp. 274-287.

[GAFF91] J. D. Gafford, "Rate Mnotonic Scheduling", |EEE
M cro, June 1991, pp. 34-38.

[JOES86] M Joseph and P. Pandya, "Finding Response Tines in a
Real - Ti me Systent, The Conputer Journal, Vol. 29, No.
5, 1986, pp. 390-395.

[KENNO1] K. B. Kenny and K Lin, "Measuring and Anal yzi ng Real -
Ti me Performance", | EEE Software, Septenber 1991
pp. 41-49.

[LIEN92] C. Lien and C. Yang, "Specification and Qality
Assurance of Timng Constraints in Real-Tinme Systens
Devel opnent", Software--Practice and Experience
Novenber 1992, pp. 963-984.

[L1 U90] L. Y. Liu and R K. Shyanmasundar, "Static Anal ysis of
Real -Tine Distributed Systens", [|EEE Transactions on
Sof tware Engi neering, April 1990, pp. 373-388.

[MAHI84] A. Mahjoub, "On the Static Evaluation of Distributed
Systens Performance", The Conputer Journal, Vol. 27,
No. 3, 1984, pp. 201-208.

[OBEN93] R (benza, "Rate nonotonic analysis fro real-tine
systens", | EEE Conputer, NMarch 1993, pp.73-74.

- 123 -

[PENGO3]

[POSP92]

[SHA90]

[SHEP91]

[SEI 92]

[STANO1]

[Xu93]

D. Peng and K. Shin, "Optimal Scheduling of
Cooperative Tasks in a Distributed System Using an
Enuner ati ve Method", [EEE Transactions on Software
Engi neeri ng, March 1993, pp. 253-267.

G Pospischil, et al., "Devel oping Real -Time Tasks
with Predictable Timng", [EEE Software, Septenber
1992, pp. 35-44.

L. Sha and J. B. Goodenough, "Real -Tine Schedul i ng
Theory and Ada", | EEE Conputer, April 1990, pp. 53-62.

T. Shepard and J.A. Martin Gagne, "A Pre-Run-Tine
Schedul i ng Al gorithm For Hard Real -Time Systens",

| EEE Transacti ons on Software Engi neering, July 1991,
pp. 669-677.

Sof tware Engineering Institute, The Handbook of Real -
Tinme Systens Analysis: Based on the Principles of Rate
Monot oni ¢ Anal ysis, Technical Report (Draft), July
1992, approximately 200 pages.

J. A Stankovic and K Ramanritham "The Spring
Kernel : A New Paradi gm For Real -Tinme Systens", [|EEE
Sof t wvare, May 1991, pp. 62-72.

J. Xu and D. L. Parnas, "On Satisfying Timng
Constraints in Hard-Real -Time Systens", [EEE
Transactions on Software Engi neering, Jnauary 1993,
pp. 70-84.

C Desi gn Met hods For Real - Ti ne Systens

[BECK89]

[BENVO1]

[FRAN9O]
of

S. A Becker and A. R Hevner, "Concurrent System
Design Wth Box Structures", Proceedings of the 11th
I nternational Conference on Software Engineering,
1989, pp. 32-40.

A. Benveniste and G Berry, "The Synchronous Approach
to Reactive and Real -Time Systens", Proceedings of the
| EEE, Septenber 1991, pp. 1270-1282.

G Frank and J. Di Santo, "Software/Hardware codesign

real -tine systems with ADAS', El ectronic Engineering,
March 1990, pp. 95-102.

- 124 -

[FREESO]

[GOVAS4]

[GOVASY]

[HULLO1]

[KURK93]

[LEVI 90]

[NI EL87]

[NI EL90]

[RAVNO3]

[RI DD8O]

[ROFR92]

[SAND89a]

[SAND89b]

P. Freeman, "The Nature O Design", Tutorial on

Sof tware Desi gn Techni ques, (Freeman and WAsser nan,
editors), |EEE Conputer Society, April 1980, pp. 46-
53.

H Gomaa, "A Software Design Method For Real -Tine
Systens", Conmuni cations of the ACM Septenber 1984,
pp. 938-949.

H Gomaa, "A Software Design Method For Distributed
Real - Ti me Systens", Journal O Systens And Software,
February 1989.

M Hull, et al., Developnent Methods for Real-Tine
Systens", The Conputer Journal, Vol. 34, No. 2, pp.
164- 172.

R Kurki - Suoni o, "Stepw se Design of Real-Tine
Systens", | EEE Transactions on Software Engi neeri ng,
January 1993, pp. 56-69.

S-T Levi and A. K Agrawal a, Real -Tinme System Desi gn,
MG awHi ||, New York, 1990, 299 pages.

K. W N elsen and K. Shunate, "Designing Large Real -
Time Systens Wth Ada", Conmunications of the ACM
August 1987, pp. 695-715.

K. W N elsen, Ada in Distributed Real -Ti ne Systens,
MG awHi | I, New York, 1990, 371 pages.

A. P. Ravn, et al., "Specifying and Verifying
Requi renents of Real -Tinme Systens", | EEE Transactions
on Software Engi neering, January 1993, pp. 41-55.

W E. Riddle, "An Event-based Design Mt hodol ogy
Supported By Dream, Tutorial on Software Design
Techni ques, (Freeman and Wassernman, editors), |EEE
Comput er Society, April 1980, pp. 269-283.

J. J. Rofrano, Jr., "Design considerations for
di stributed applications", IBM Systens Journal,
Vol . 31, No. 3, 1992, pp. 564-589.

B. I. Sanden, "An Entity-Life Mdeling Approach To
Desi gn O Concurrent Software", Conmunications of the
ACM WMarch 1989, pp. 330-343.

B. I. Sanden, "Entity-Life and Structured Analysis in
Real - Ti me Software Design -- A Conparison”,

- 125 -

Conmuni cat i ons of the ACM Decenber 1989, pp.
1458- 1466.

[SANDO3] B. |. Sanden, "Designing Control Systens Wth Entity
Li fe Model i ng", unpublished manuscript, June 23,
1993, 21 pages.

[SIMB1] H A Sinon, The Sciences of the Artificial, The MT
Press, Canbridge, Mass., 1981, 247 pages.

[WTT85] B. I. Wtt, "Comrunication Mdules: A Software Design
Model for Concurrent Distributed Systens", [EEE
Conput er, January 1985, pp. 67-77.

[YAMAO3] S. Yanmzaki, et al., "Object-Oiented Design of
Tel ecomuni cati ons Software", | EEE Software,
January 1993, pp. 81-87.

D. For mal Met hods

[HOAR87] C. AL R Hoare, "An Overview of Sone Formal Methods
for Program Design”, |EEE Conputer, Septenber 1987,
pp. 85-91.

[IPSEQO0] E. A Ipser and D. S. Wle, "A Miulti-Formalism
Speci fication Environnment", Software Engi neering
Not es, Decenber 1990, pp. 94-106.

[WNX@0] J. M Wng, "A Specifier’s Introduction to Fornal
Met hods", | EEE Conputer, Septenber 1990, pp. 8-24.

D.1 Finite State Mchi nes

[CHAMB1] S. Chanberlain and P. Aner, "Broadcast Channels in
Estell e", [EEE Transactions on Conputers, April 1991,
pp. 423-436.

[CHAMB2] S. Chanberl ain, Estelle Enhancenents for Fornmally
Specifying D stributed Systens, University of
Del aware, Dissertation, TR 92-17, Decenber 1992,
170 pages.

[CHAN85] M Chandrasekharan, et al., "Requirenents-Based
Testing of Real -Tinme Systens: Mdeling for
Testability", | EEE Conputer, April 1985, pp. 71-80.

[COLE92] D. Coleman, et al., "Introducing Objectcharts or How
to Use Statecharts in Cbject-Oiented Design", |EEE

- 126 -

[DI AZ89]

[HARES7]

[HARE9O]

[1SCo2]

[KUUL91]

[SHAV®2]

[SI JE92]

D.2 Petri

[BALBO2]

[BERT91]

[CHI 093]

Transactions on Software Engi neering, January, 1992,
pp. 9-18.

M Diaz, et al. (editors), The Formal Description
Techni que Estelle, North-Holland, 1989, 439 pages.

D. Harel, et al., "On the Fornmal Semantics of
Statecharts", |EEE, 1987, pp. 54-60.

D. Harel, et al., STATEMATE: A Wbrking Environnent for
t he Devel opnent of Conpl ex Reactive Systens", [|EEE
Transactions on Software Engi neering, April 1990, pp.
403- 413.

I nternational Organization for Standardization,
Estelle Tutorial, Cctober 26, 1992, |S09074,
Ammendnent 1, Annex D, 55 pages.

. Kuul uvai nen, et al., "The Action-State D agram A
Conpact Finite State Machi ne Representation For User
Interfaces and Snmal |l Enbedded Reactive Systens",

| EEE Transactions on Consuner El ectronics, August
1991, pp. 651-658.

A. Shaw, "Conmuni cating Real -Tinme State Machi nes"”,
| EEE Transactions on Software Engi neering, Septenber
1992, pp. 805-816.

R Sijelmassi and R J. Linn, "QGuidelines for using
Estelle to specify OSI services and protocol s",
Conput er Networks, Vol. 23, No. 5, pp. 343-362.

Net s

G Bal bo, et al., "An Exanple of Modeling and

Eval uati on of a Concurrent Program Usi ng Col ored
Stochastic Petri Nets: Lanport’s Fast Mitual Excl usion
Al gorithni, [|EEE Transactions on Parallel and

Di stributed Systens, March 1992, pp. 221-239.

B. Berthom eu and M Di az, "Modeling and Verification
of Time Dependent Systens Using Tine Petri Nets",

| EEE Transacti ons on Software Engi neering, March 1991,
pp. 259-273.

G Chiola, et al., "Generalized Stochastic Petri Nets:
A Defintion at the Net Level and Its Inplications”,

| EEE Transactions on Software Engi neering, February
1993, pp. 89-107.

- 127 -

[DUGGSS]

[GHEZ91]

[LAUSSS]

[M CO90]

[MURAS4]

[MURASO]

[PAPE92]

[TAQ 92]

[W LL9O]

[YACB9]

J. Duggan and J. Browne, "ESPNET: expert-system based
sinmul ator of Petri nets", |EE Proceedings, Vol. 35,
Pt. D, No. 4, July 1988, pp. 239-247.

C. Ghezzi, et al., "A Unified Hi gh-Level Petri Net
Formalismfor Tinme-Critical Systens", [|EEE
Transactions on Software Engi neering, February 1991,
pp. 160-172.

G Lausen, "Mdeling and Anal ysis of the Behavi or of
I nformati on Systens", [|EEE Transactions on Software
Engi neeri ng, Novenber 1988, pp. 1610-1620.

A. Mcovsky, et al., "TORA: A Petri Net Based Tool for
Rapi d Prototyping of FMS Control Systens and its
Application to Assenbly", Conputers in |Industry,

15(4) (1990), PP. 279-292.

T. Murata, "Modeling and Anal ysis of Concurrent
Systens", Handbook of Software Engineering, (Vick and
Ramanoorthy, editors), Van Nostrand Rei nhol d, New
York, 1984, pp. 49-63.

T. Murata, "Petri Nets: Properties, Analysis, and
Applications", Proceedings of the | EEE, April 1989,
pp. 541-580.

Y. Papelis and T. Casavant, "Specification and

Anal ysis of Parallel/Di stributed Software and Systens
by Petri Nets Wth Transition Enabling Functions",

| EEE Transactions on Software Engineering, March 1992,
pp. 252-261.

A A Q Taqgi, et al., "A conparative study between
Petri Net and SLAM', Sinul ation, Novenber 1992, pp
339- 344.

R G WIIlson and Bruce Krogh, "Petri Net Tools for
the Specification and Anal ysis of Discrete
Control |l ers", |EEE Transactions on Software

Engi neeri ng, January 1990, pp. 39-50.

Y. Yao, "An Approach to Formal Specification and

Anal ysis for Tine Performance of the Concurrent Real
Time System (RTEXS)", Conputers in |Industry, 12(1989),
pp. 347-354.

D.3 Tenporal Ordering

[Bl EVB6]

F. Biemans and P. Blonk, "On the Formal Specification

- 128 -

[1S087]

[1SCO2]

[KARA91]

[LOGR8S]

[MUNS91]

[SI ST91]

D.4 Oher

and Verification of CIM Architectures Using LOTOS"
Conputers in Industry, (7) (1986), pp. 491-504.

I nternational Organization for Standardization,

LOTOS -- A Formal Description Techni que Based on the
Tenporal Ordering of Observational Behavior, July 20,
1987, 126 pages.

I nternational Organization for Standardi zation, LOTOS
-- A Fornmal Description Techni que Based on the

Tenporal Ordering of Observational Behavior, Amendnent
1. G LOTCS, April 30, 1992, 111 pages.

G Karam and R Buhr, "Tenporal Logic-Based Deadl ock
Anal ysi s For Ada", | EEE Transactions on Software
Engi neeri ng, Cctober 1991, pp. 1109-1125.

L. Logrippo, et al., "An Interpreter for LOTCS, A
Speci fication Language for Distributed Systens”,
Soft war e-- Practice and Experience, April 1988, pp.
365- 385.

H B. Munster, LOTOS specification of the MAA
standard, with an evaluation of LOTCS, Nati onal
Physi cal Laboratory, Report DI TC 191/91, Septenber
1991, 87 pages.

R Sisto, et al., "A Protocol for Multirendezvous of
LOTCOS Processes”, | EEE Transactions on Computers,
April 1991, pp. 437-446.

Rel evant Fornmali sns

[DILLO9OD] A. Diller, Z -- An Introduction To Fornal Methods,

[GERBO2]

[HOARS5]

[LAVPSO]

John Wley and Sons, New York, 1990, 309 pages.

R Cerber and |I. Lee, "A Layered Approach to
Automating the Verification of Real-Tinme Systens"”,

| EEE Transacti ons on Software Engi neering, Septenber
1992, pp. 768-784.

C. AR Hoare, Conmunicating Sequential Processes,
Prentice-Hall, Englewood Ciffs, N J., 1985, 256
pages.

L. Lanport, "A Sinple Approach To Specifying
Concurrent Systens", Conmunications of the ACM January
1989, pp. 32-45.

- 129 -

[POTT91] B. Potter, et al., An Introduction to Fornal
Specification and Z, Prentice-Hall, Englewood diffs,
N. J., 1991, 304 pages.

E. Dynam ¢ Model i ng Approaches

[MAY87] P. J. Mayhew and P. A Dearnley, "An Alternative
Prototypi ng Cl assification", The Conputer Journal,
Vol . 30, No. 6, 1987, pp. 481-484.

[ZEI GB4] B. P. Zeigler, "Theory and Application of Mdeling and
Si mul ation: A Software Engi neering Perspective",
Handbook of Software Engi neering, (Vick and
Ranmanoorthy, editors), Van Nostrand Rei nhol d, New
York, 1984, pp. 1-25.

E.1 Executable Specifications

[HULL86] M E. C. Hull, "Inplenentations of the CSP Notation
for Concurrent Systens", The Conputer Journal, Vol. 29,
No. 6, 1986, pp. 500-505.

[LEE91] S. Lee and S. Sluzier, "An Executabl e Language For
Model i ng Si npl e Behavior™, | EEE Transacti ons on
Sof t wvar e Engi neeri ng, June 1991, pp. 527-543.

[NOTA92] G Nota and G Pacini, "Querying of Executable
Sof tware Specifications", |EEE Transactions on
Sof t war e Engi neering, August 1992, pp. 705-716.

[VALE93] A. Val enzano, et al., "Rapid Prototyping of Protocols
from LOTOS Specifications”, Software--Practice and
Experi ence, January 1993, pp. 31-54.

[ZAVE8B2] P. Zave, "An Operational Approach to Requirenents
Speci fication for Enbedded Systens", [EEE Transactions
on Software Engi neering, May 1982, pp. 250-269.

[ZAVEB6] P. Zave and W Schell, "Salient Features of an
Execut abl e Specification Language and Its
Envi ronnent", [EEE Transactions on Software
Engi neeri ng, February 1986, pp. 312-325.

E.2 Prototyping
[BERE84] W E. Beregi, "Architectural prototyping in the

sof tware engi neering environnment", [|BM Systens
Journal, Vol . 23, No. 1, 1984, pp. 4-18.

- 130 -

[BROABS]

[CAME91]

[CHOP90]

[CHUS7]

[HARDSS]

[LUQ 92]

[SAHR92]

E.3 Sinul

[DEME91]

[FI NN92]

[CZDE93]

[PARRO2]

D. W Brown, et al., "Software Specification And
Prot ot ypi ng Technol ogi es", AT&T Techni cal Journal,
Jul y/ August 1988, pp. 33-45.

E. J. Caneron, et al., The L.0 Language and

Envi ronnent for Protocol Simuation and Prototyping”,
| EEE Transactions on Conputers, April 1991, pp.
562-570.

C. Choppy and S. Kaplan, "M xing Abstract And Concrete
Modul es: Specification, Devel opment And Prototyping",
Proceedi ngs of the 12'" Internati onal Conference On
Sof t war e Engi neering, 1990, pp. 173-184.

W W Chu, et al., "Testbed-Based Validation of Design
Techni ques for Reliable Distributed Real -Tine
Systens", Proceedings of the | EEE, May 1987, pp.

649- 667.

B. Hardi ng, "Executable nodeling aids design of
real -ti me enbedded systens", Conputer Design, Decenber
1988, pp. 48-49.

Lugi, "Conputer-Aided Prototypi ng For A Conmand- And-
Control System Using CAPS', |EEE January 1992, pp.
56-67.

A E. K Sahraoui and N. Qul d- Kaddour, "Control Software
Prototypi ng", Conputers in Industry, 20 (1992), pp.
327- 334.

ation

E. C DeMeter and M P. Deisenroth, "A BSS: A nodel
specification framework for nulti-stage, manufacturing
system design", Sinulation, June 1991, pp. 413-421.

A. Finn, et al., "Sinmulation of nultiple access
protocols for real-tine control", Sinulation, February
1992, pp. 123-130.

N. EE Ozdemrel and G T. Mackul ak, "A Ceneric

Si nul ati on Mbdul e Architecture Based on C ustering
G oup Technol ogy Model Codings", Sinulation, June
1993, pp. 421-433.

G Parr and P. Bielkow cz, "Layered sinulation of
Bridge protocols for Miulti-LAN Et hernet Conmuni cati on
Systens", Sinulation, February 1992, pp. 109-122.

- 131 -

[Pl DDO2]

[ROSE92]

[SAKT92]

[ZEl G87]

E.4 Hybri

[BAGRO1]

[BALD91]

[ESTR86]

M Pidd, "CGuidelines for the design of data driven
generic sinulators for specific domains", Sinmuation,
Oct ober, 1992, pp. 237-243.

R C. Rosenberg, et al., "Extendible sinulation
software for dynam c systens", Sinulation, March 1992,
pp. 175-183.

S. Sakthivel and R Agarwal, "Know edge-based nodel
construction for sinulating information systens”,
Si nul ation, Cctober 1992, pp. 223-236.

B. P. Zeigler, "Hi erarchical, nodular discrete-event
nodel ling in an object-oriented environnent”,
Si nul ati on, Novenber 1987, pp. 219-230.

d Approaches

R J. Bagrodia and C. Shen, "M DAS:. |ntegrated Design
and Sinmulation of Distributed Systens", [|EEE
Transactions on Software Engi neering, October 1991,
pp. 1042-1058.

M Bal dassari, et al., "PROTOB. an Object-oriented
CASE Tool for Mdelling and Prototyping Distributed
Systens", Software--Practice and Experience, August
1991, pp. 823-844.

G Estrin, et al., "SARA (System ARchitects
Apprentice): Mdeling, Analysis, and Sinul ation
Support for Design of Concurrent Systens", |EEE
Transactions on Software Engi neering, February
1986, pp. 293-311.

F. Languages

[BUDGS5]

[DOTA91]

[HANS87]

D. Budgen, "Conbining MASCOT with Mdula-2 to aid the
Engi neering of Real -Time Systens", Software--Practice
and Experience, August 1985, pp. 767-793.

Y. Dotan and B. Arazi, "Using Flat Concurrent Prol og
in System Model i ng", | EEE Transactions on Software
Engi neeri ng, June 1991, pp. 493-512.

P. B. Hansen, "Joyce -- A Programm ng Language for

Di stributed Systens", Software--Practice and
Experience, January 1987, pp. 29-50.

- 132 -

[1 SHI 92]

[MEYESS]

[ROSE91]

[STEUS4]

[W SE93]

G O her

[ABRA92]

[CARD91]

[DI LL90G

[WANGO3]

Y. Ishikawa, et al., "An Object-Oiented Real -Tine
Programm ng Language", | EEE Conputer, Cctober 1992,
pp. 66-73.

B. Meyer, (bject-oriented Software Construction,
Prentice-Hall, New York, 1988, 534 pages.

D. S. Rosenblum "Specifying Concurrent Systens with
TSL", | EEE Software, May 1991, pp. 52-61.

H U Steusloff, "Advanced Real - Ti me Languages for
Distributed Industrial Process Control", [|EEE
Conput er, February 1984, pp. 37-46.

M J. Wse, "Experience with PMs-Prolog: a

Di stributed, Coarse-grain-parallel Prolog with
Processes, Mdul es and Streans", Software--Practice
and Experience, February 1993, pp. 151-175.

Rel at ed Ref erences

M Abrans, et al., "Chitra: Visual Analysis of
Parall el and D stributed Prograns in the Tinme, Event,
and Frequency Domai ns", | EEE Transactions on Parall el
and D stributed Systens, Novenber 1992, pp. 672-685.

S. Cardenas-Garcia and M Zel kowtz, "A Managenent
Tool For Eval uation of Software Designs", [|EEE
Transactions on Software Engi neering, Septenber 1991,
pp. 961-971.

L. K Dllon, "Verifying General Safety Properties of
Ada Tasking Programs", | EEE Transactions on Software
Engi neeri ng, January 1990, pp. 51-63.

Y. Wang and D. L. Parnas, "Sinulating the Behavior of
Sof tware Modul es by Trace Rewiting”, Proceedi ngs of

the 15'" International Conference on Software
Engi neeri ng, May 1993, pp. 14-23.

- 133 -

