
Adaptive Jitter Control for UPnP M-Search

Kevin Mills and Christopher Dabrowski
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract – Selected service-discovery systems allow clients to
issue multicast queries to locate network devices and services.
Qualifying devices and services respond directly to clients; thus,
in a large network, potential exists for responses to implode on a
client, overrunning available resources. To limit implosion, one
service-discovery system, UPnP, permits clients to include a
jitter bound in multicast (M-Search) queries. Qualifying devices
use the jitter bound to randomize timing of their responses.
Initially, clients lack sufficient knowledge to select an
appropriate jitter bound, which varies with network size. In this
paper, we characterize the performance of UPnP M-Search for
various combinations of jitter bound and network size. In
addition, we evaluate the performance and costs of four
algorithms that might be used for adaptive jitter control.
Finally, we suggest an alternative to M-Search for large
networks.

I. INTRODUCTION

Selected service-discovery systems allow clients to issue
multicast queries to locate network devices and services [1,
3]. Qualifying devices and services respond directly to
clients; thus, in a large network, potential exists for responses
to implode on a client, overrunning available resources. This
implosion problem also arises in other protocols that support
multicast queries and responses [4-7]. To limit implosion,
one service-discovery system, Universal-Plug-and-Play1
(UPnP) permits clients to include a jitter bound (MX) in
multicast (M-Search) queries. Each qualifying device jitters
its response time by randomly selecting a delay up to MX.
Initially, clients lack sufficient knowledge to select an
appropriate jitter bound, which varies with network size.

In this paper, we model the UPnP M-Search mechanism
and characterize performance for various combinations of
jitter bound and network size. The resulting performance
curves should help designers of UPnP clients to understand
the effects of selecting particular jitter bounds. We also
consider four algorithms that might be used to adaptively
control jitter in UPnP M-Search. We compare the
performance of the adaptive algorithms against each other
and against a fixed jitter bound. We discuss the costs
associated with adaptation. These costs lead us to suggest an
alternative approach to M-Search for large networks. The

1 Certain commercial products and standards are identified in this paper to
describe our study adequately. The National Institute of Standards and
Technology neither recommends nor endorses these products or standards as
the best available for the purpose.

insights we provide should help designers of service-
discovery systems to create architectures that can scale across
a variety of network sizes, while achieving effective and
efficient performance.

The remainder of this paper is organized as follows.
Section II describes the UPnP M-Search mechanism, defines
an experiment and related metrics to characterize M-Search
performance, and illustrates M-Search performance for
varying jitter bounds and network sizes. Section III outlines
four algorithms that might be used to adaptively adjust M-
Search jitter bounds, and compares the performance of the
algorithms against each other and against a fixed jitter bound.
Section III also discusses the costs and assumptions
underlying adaptation. Section IV suggests an alternative to
M-Search for use in large networks. Section V gives our
conclusions.

Fig. 1. General Operation of UPnP Discovery

II. CHARACTERIZING M-SEARCH PERFORMANCE

Fig. 1 depicts the general operation of device and service
discovery in UPnP. UPnP consists of two main elements:
root devices (servers) and control points (clients). A UPnP
network may contain r > 0 root devices. Each root device
contains d > 0 embedded devices and k > 0 unique service
types, where each device and service has a specific type.
Each root device also contains a hierarchical description that
defines the capabilities of 1 + d + k elements: the root device
and each of its embedded devices and unique service types.
The description can be rather lengthy; thus, UPnP provides a
two-step process for obtaining descriptions. A control point
first discovers devices or services of interest by type or
identity, and then requests the related descriptions.

HTTP/UDP Unicast Messages

Control
Point

UPnP Multicast Group
Notify M-Search w/MX

M-Search
Responses

r Root
Devices

1Root Device
Description

d Embedded
Device

Descriptions
k Service Type
Descriptions

1 Root Device
Description
d Embedded

Device
Descriptions

k Service Type
Descriptions

n * (3 + 2d + k)

HTTP/UDP Unicast Messages

Control
Point

UPnP Multicast Group
Notify M-Search w/MX

M-Search
Responses

r Root
Devices

1Root Device
Description

d Embedded
Device

Descriptions
k Service Type
Descriptions

r Root
Devices

1Root Device
Description

d Embedded
Device

Descriptions
k Service Type
Descriptions

1 Root Device
Description
d Embedded

Device
Descriptions

k Service Type
Descriptions

n * (3 + 2d + k)

UPnP provides two discovery modes: lazy and aggressive.
Lazy discovery uses periodic announcements sent by each
root device on the UPnP multicast group (Notify in Fig. 1).
At each announcement interval, each root device sends n (3 +
2d + k) Notify messages to identify the root device (and its
identity and type), each embedded device (by identity and
type), and each unique service type (by type). The UPnP
specification recommends a duplicate transmission factor, n,
“due to the unreliable nature of UDP” (user-datagram
protocol) [1]. Control points listen for announcements to
discover the existence of various devices and services. The
UPnP specification sets the announcement interval at 30 min.
or more. For this reason, control points may use aggressive
discovery to get an immediate picture of available services.

Aggressive discovery commences when a control point
multicasts an M-Search query, which specifies an interest
(that can include specific devices, device types, service types,
or all) and a jitter bound (MX in Fig. 1). Root devices listen
for M-Search queries to determine if any contained items are
of interest. Each root device sends 3n responses if the root
device qualifies, and 2n and n responses respectively for each
qualifying embedded device and service type. If the query
asks for everything (SSDP_ALL), each root device responds
with the same n (3 + 2d + k) messages used in lazy discovery.
To mitigate a potential implosion of responses, each root
device waits a random time, uniformly distributed in the
range 0..MXs, before transmitting its responses in a burst.

A. Experiment Definition

To characterize M-Search performance, we used SLXTM [8]
to construct a simulation model representing the topology
shown in Fig. 1, deployed in a 10-Mbps Ethernet. Since the
UPnP specification allows implementation choices, we based
those aspects of our model on UPnP software available
publicly from Intel [9]. We allow the number of root devices,
r, to vary from 10 to 200 by 10-step increments. Each root
device includes an identical count of embedded devices (d =
2) and service types (k = 3). We set n = 2, the default value in
the Intel implementation of UPnP. We allow MX to vary
from 2 to 40 in 2-s increments. For each combination of r and
MX, an M-Search task in a single control point issues a query
requesting SSDP_ALL, which elicits n (3 + 2d + k) = 20 200-
byte response messages from each root device; thus,
aggregate implosion ranges from 200 (r = 10) to 4000 (r =
200) response messages. (To keep our graphs legible, we
display results over only r = 10..100 and MX = 2..20.) We
limit the M-Search task to buffer no more than 40 messages,
dropping the excess. We allow the control point task to
execute every 5 ms, processing one response message at each
execution (200 messages/s maximum rate). For each
message, the task examines a cache to see if a new discovery
occurs, adding items to the cache as required. The task takes
c ms to process a message, where c varies with the cache

size. When finished, the task reschedules itself to execute in
5 – c ms. If c > 5, the task executes immediately.

 Fig. 2. Overall discovery effectiveness (E) compared against
discovery effectiveness by entity type: root devices (Er), embedded devices
(Ed), and services (Es). [MX = 10 s]

B. M-Search Performance

We measure system performance with four metrics:
discovery effectiveness (E), discovery latency (L), buffer
utilization (B), and processor usage (P). Given a network
comprising e = r + rd + rk entities and assuming that a
control point discovers f < e entities from responses to an M-
Search, then E = f / e. We can also track discovery
effectiveness by entity type, root devices (Er), embedded
devices (Ed), and services (Es) as shown in Fig. 2. In the Intel
implementation, each root device sends M-Search responses
in the same order (3n then 2dn then kn) and since responses
earliest in the sequence are more likely to find buffer space
available at the control point, root devices are more likely to
be discovered than either embedded devices (next most
likely) or services (least likely).

Fig. 2 also reveals that randomly jittering responses does
not ensure E = 1, even when MX is set to a seemingly
suitable value. When r = 100, a total of 2000 response
messages will implode on the control point, which processes
200 messages/s, suggesting that 10s (2000/200) might be a
suitable value for MX. Unfortunately, since each root device
picks a random time to respond and then sends a burst of 20
response messages, collision periods can occur during which
receive buffers are overrun in the control point. Fig. 3
displays the problem.

Even at MX = 20s, collisions occur with sufficient
frequency that E decays significantly beyond r = 50.
Collisions lead to increased buffer occupancy (Fig. 4), which
leads to increased likelihood of message drops. Periods of
high buffer occupancy (and therefore message loss) tend to
persist, as incoming messages arrive in bursts at random
intervals, while the M-Search task reduces the buffer backlog
at a steady rate.

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

10 20 30 40 50 60 70 80 90 100
r

D
is

co
ve

ry
 E

ffe
ct

iv
en

es
s

E

Er

Ed

Es

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

10 20 30 40 50 60 70 80 90 100
r

D
is

co
ve

ry
 E

ffe
ct

iv
en

es
s

E

Er

Ed

Es

Fig. 3. Discovery effectiveness (E) for various values of MX (2s to 20s in
2s increments) as the number or root devices (r) increases.

Fig. 4. Average buffer occupancy (B) as a percentage of available buffers
(40 messages in this case) for various values of MX (2s to 20s in 2s
increments) as the number or root devices (r) increases.

Fig. 5. Average discovery latency (L) for various values of MX (2s to 20s
in 2s increments) as the number or root devices (r) increases.

Buffer size at the control point can be augmented to

accommodate additional responses; however a suitable buffer
size may be difficult to determine given the random nature of
response jitter (and unknown network size). Instead, a

control point could increase MX; but then, as Fig. 5 shows,
discovery latency will grow.

We define discovery latency (L) as the time that elapses
between successive discoveries of new entities in the
network. As Fig. 5 shows, when MX is large compared to
network size the gap between new discoveries grows for a
control point. An increased MX also leads to fewer buffer
overruns, which increases the discovery effectiveness for a
control point. As discovery effectiveness increases, the
discovery cache in the control point increases in size, which
causes the M-Search task to spend more processor cycles
examining each response message (Fig. 6). This increase
occurs because the M-Search task must look through more
cache entries to determine if a new entity has been
discovered, and to insert a related cache entry if needed. For
relatively large values of MX, processor utilization increases
linearly with network size, though this would change if we
modeled more efficient search algorithms. For relatively
small values of MX, growth in processor utilization levels off
with the size of the discovery cache maintained by the M-
Search task.

III. ADAPTIVE JITTER CONTROL

We propose four algorithms for adaptive-jitter control, and
then illustrate the performance arising from each. We also
discuss the costs and assumptions underlying the algorithms.
Some other algorithms to address multicast query-response
implosion can be found in the literature [10,11].

A. Four Adaptive Jitter-Control Algorithms

In adaptive-jitter control, each root device independently
estimates the time it will take for all root devices to respond
to each M-Search query. Each root device then uses its
estimate to determine a time to send its own responses (if
any). Included in each response message is a value
recommending how long the control-point M-Search task
should listen for responses. With this approach, the M-Search
task need not guess an appropriate MX value.

Each root device listens on the UPnP multicast group for
Notify messages (which include a caching time, or max-age)
sent by all root devices, and builds a map (NM) of devices
and services in the network. For each root device, NM
includes: the identity and type of the root device and all
embedded devices and unique service types, a max-age, and
an estimate of the redundant transmission factor (n).
Estimates of n exploit the fact that in the Intel
implementation each message is sent n times before the next
message. Listening root devices apply a time threshold to
identify duplicate messages and then compute an average n
for each announcing root device.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100
r

E

MX = 2

MX = 20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100
r

E

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100
r

E

MX = 2

MX = 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60 70 80 90 100
r

L
(s

)

MX = 2

MX = 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60 70 80 90 100
r

L
(s

)

MX = 2

MX = 20

MX = 2

MX = 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100

r

B
 (a

vg
. p

er
ce

nt
)

MX = 2

MX = 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100

r

B
 (a

vg
. p

er
ce

nt
)

Fig. 6. Average processor time (P) in seconds/message for a Control
Point M-Search task to examine a response for various values of MX (2s to
20s in 2s increments) as the number or root devices (r) increases.

M-Search queries issued by the M-Search task include a

rate, R, at which the task can consume messages, and also an
MX > 0. Upon receiving an M-Search query, a root device
cycles through its NM to estimate how many response
messages will be sent by all root devices, using R to also
estimate when the last set of responses should commence
(Jstart) and finish (Jend) – under an assumption that
messages will be sent consecutively at rate R. During this
process, a root device can also note a time (Stx) when it
should send its own responses – under an assumption that
root devices will send messages sequentially in the ascending
order of their unique identities. Using this information, we
devised four adaptive jitter-control algorithms: Random Burst
(RB), Random Paced (RP), Scheduled Burst (SB), and
Scheduled Paced (SP).

In the random algorithms (RB and RP), a root device
selects a time, Tr, randomly distributed uniformly on the
interval [0,Jstart], to send its response messages. The root
device includes Jend in each response so that the M-Search
task will learn an appropriate time interval to listen. The root
device will not respond if 0 < MX < Tr. In the RB variant of
the algorithm, the root device bursts its response messages. In
the RP variant, the root device paces its responses at rate R.

In the scheduled algorithms (SB and SP), a root device
sends its response messages at Stx; however, the root device
will not respond if 0 < MX < Stx. Response messages are sent
in a burst (SB) or at rate R (SP). The root device includes
Jend in each response message.

B. Performance of Adaptive Jitter Control

Fig. 7 illustrates discovery effectiveness (E) for each adaptive
jitter-control algorithm as the number of root devices (r)
increases from 10 to 300. For comparison, we include the
performance of a fixed MX = 33s, which is the Jstart value
estimated by each root device when r = 300.

Scheduling transmissions achieves full effectiveness (E =
1). On the other hand, randomizing transmissions leads to

collisions in the receive buffers, and then to buffer overflows
and lost discoveries. Pacing responses (RP) results in fewer
buffer overflows, but fails to eliminate them. While RP more
closely matches arrival rate with service rate, Fig. 8 indicates
a nearly identical average buffer occupancy for RP and RB.

Fig. 7. Discovery effectiveness for four adaptive jitter control algorithms
and one fixed jitter bound as the number of root devices increases

Fig. 8. Average buffer occupancy for various jitter-control algorithms as
the number of root devices increases.

Buffer utilization is very low for SP because scheduling

eliminates collisions and responses arrive at the rate at which
the M-Search task can process them. While SB avoids
collisions, responses arrive in (20-message) batches, leading
to a higher average buffer utilization. Fig. 8 also shows that
each of the adaptive jitter-control algorithms yields a nearly
stable average buffer utilization (but at different occupancy
levels), while buffer utilization for a fixed MX varies with the
relationship between MX and r.

Fig. 9 illustrates that all the adaptive jitter-control
algorithms provide consistently low average discovery
latency, L, despite variation in network size, which is not the
case for a fixed MX, where latency varies with the
relationship between MX and r. The scheduled algorithms
(SB and SP) perform slightly better than the random
algorithms (RB and RP) because buffer overflows resulting

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

10 20 30 40 50 60 70 80 90 100

r

P
 (a

vg
. s

/m
sg

)

MX = 20

MX = 2
0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

10 20 30 40 50 60 70 80 90 100

r

P
 (a

vg
. s

/m
sg

)

MX = 20

MX = 2

0.8

0.85

0.9

0.95

1

10 60 110 160 210 260
r

E

Fixed MX = 33

RB

RP

SB SP

0.8

0.85

0.9

0.95

1

10 60 110 160 210 260
r

E

Fixed MX = 33

RB

RP

SB SP

0

0.1

0.2

0.3

0.4

10 50 90 130 170 210 250 290
r

B
 (a

vg
. p

er
ce

nt
)

Fixed MX = 33

RB

RP

SB

SP
0

0.1

0.2

0.3

0.4

10 50 90 130 170 210 250 290
r

B
 (a

vg
. p

er
ce

nt
)

Fixed MX = 33

RB

RP

SB

SP

from jitter randomization cause some discoveries to be lost,
which tends to lengthen the time between new discoveries.

Fig. 9. Average discovery latency of various jitter-control algorithms as
the number of root devices increases

Fig. 10. Average processor seconds per message used by the M-Search
task for various jitter-control algorithms and increasing network size.

The scheduled algorithms also lead to some serendipitous

effects on processor utilization in the M-Search task (Fig.
10). Since scheduled responses arrive in order, the M-Search
task need not conduct a search of its discovery cache for each
response message. Instead, the M-Search task checks to see if
a response can be inserted into the cache at the current
insertion point. Only if this is not the case does the M-Search
task need to search its cache. In our experiments all
scheduled responses arrived in the expected order; thus, Fig.
10 shows that both SB and SP consume a small, fixed
amount of processor time for each message.

Fig. 10 also shows that the cache search required by the
random algorithms causes processor utilization to increase as
the number of discovered entities increase. Processor
utilization for RP always exceeds that for RB because the RP
algorithm discovers a greater percentage of entities. Random
jitter with a fixed MX = 33s uses more processor time than
either RP or RB up until about r = 200, where RP proves

more effective and thus requires more processor time. The
rate of increase in processor utilization for the fixed MX
continues to decline, reaching the same value as RB when r =
300 (and Jstart = MX = 33s).

C. Costs and Caveats

Adaptive jitter control comes with two costs: memory and
processing time in root devices. Each root device creates,
stores, and maintains a network map (NM) of size

)]([
0

iii

r

i
tkdqphS ++⋅++= ∑

=

, (1)

where h is the cache-header size, p is the root-device header
size, q is per-entry content size, r is the number of root
devices, and di, ki, and ti represent respectively the number of
embedded devices, service types, and device types
maintained by root device i. In our experiments, S varies
from about 1.2 (r = 10) to 37 (r = 300) Kbytes.

To process an M-Search query, a root device must scan
NM to estimate the likely number of responses that will be
issued by all root devices. During the scan, a root device also
purges stale entries. Thus, for each M-Search query a root
device uses processor time

)()]1([
0

OykdxC ii

r

i

⋅+++⋅=∑
=

, (2)

where x is processor time to scan one entry, y is processor
time to purge one root-device, and O is the number of stale
root-device entries found during the scan. In our experiments,
for SSDP_ALL queries with no stale entries, C varies
between 0.3 (r = 10) and 9 (r = 300) ms.

In addition to memory and processing costs, the scheduled
algorithms assume that each root device has the same
knowledge about network state (NM). Absent this
assumption, root devices would schedule collisions, leading
to lower discovery effectiveness. This same-NM assumption
should hold in steady state, where all root devices have had a
chance to announce themselves and where changes occur
infrequently. Of course, when a root device enters a network
it must acquire NM to participate effectively in adaptive jitter
control.

IV. DISCOVERY IN LARGE NETWORKS

Most discovery protocols provide for recurring
announcements at a known interval. For example, the Jini
protocol recommends announcements every 120s [11].
Recurring announcements permit a network device to listen
for a period of time over which a reasonably complete NM
might be constructed. Unfortunately, the minimum
announcement interval specified for UPnP is 30 min., which
might prove too long a period for a device to wait before
participating on the network. To compensate for this lengthy
announcement interval, UPnP provides the M-Search

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

10 50 90 130 170 210 250 290
r

P
(a

vg
. s

/m
sg

)

RP

RB

Fixed MX = 33

SPSB

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

10 50 90 130 170 210 250 290
r

P
(a

vg
. s

/m
sg

)

RP

RB

Fixed MX = 33

SPSB

0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.4
0.45
0.5

10 50 90 130 170 210 250 290
r

L
 (s

)

Fixed MX = 33

RB RP SB SP
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.4
0.45
0.5

10 50 90 130 170 210 250 290
r

L
 (s

)

Fixed MX = 33

RB RP SB SP

mechanism so that network devices can attempt to gain a
sense of the NM on demand. We have shown, though,
limitations of the M-Search as a means to find all devices and
services on the network. Some other discovery protocols
[2,3] include feedback mechanisms within their multicast
queries in order to provide a means of dampening responses.
Using such dampening mechanisms, a short repeated burst of
multicast queries (for example, Jini recommends seven
queries at intervals of five seconds) might be used to obtain a
reasonably complete NM (ignoring the possibility of
temporary node and channel failures). Unfortunately, UPnP
includes none of these mechanisms; thus, acquiring the NM
needed to permit effective participation in adaptive jitter
control for M-Search queries seems to require using the
regular UPnP M-Search. Since we have already shown UPnP
M-Search to be ineffective for this purpose, we propose an
alternative to M-Search for NM-bootstrap and for general use
in large networks.

Suppose that on startup a root device initiates a network
mapping (NM) service with probability W. In that case, the
network will contain only rW NM services. Then a control
point, or a newly starting root device, can use M-Search (in
fixed or adaptive form) to query only for instances of NM
services. Each qualifying NM service can respond with the
count of root devices, embedded devices, and service types
known to it. Using this information, a querying node can
select one NM service and use http-GET (HyperText Transfer
Protocol) to retrieve its NM. Alternatively, the querying node
may issue http-GETs to multiple NM services, and then
merge the results into a signal NM. After retrieving a NM, a
root device should be sufficiently bootstrapped to participate
in adaptive M-Search. For a control point, querying for NM
services will reduce (or eliminate) the need to issue
SSDP_ALL M-Search queries.

 A further advantage of using NM services can accrue as
network volatility increases. As the need arises, due to
increase in load or in network or node failures, a root device
can choose to start a NM service to increase redundancy or to
share the load from an increasing number of client queries.
Similarly, as volatility diminishes or as network size
decreases, root devices with a running NM service can elect
to terminate the service in order to reduce network overhead.

V. CONCLUSIONS

Given the UPnP M-Search mechanism, we illustrated
relationships among network size (r), jitter bound (MX),
discovery effectiveness (E) and latency (L), and buffer (B)
and processor (P) utilization. Specifically, we showed how
an inappropriate jitter bound (MX value) in UPnP M-Search
queries could significantly reduce discovery effectiveness or
increase discovery latency. We outlined four algorithms that
might be used for adaptive jitter control, and we explained
the storage and processing costs associated with adaptation.
We compared the performance of the adaptive algorithms

against each other and against a fixed MX value. The random
paced (RP) algorithm yielded increased discovery
effectiveness over random burst (RB). Both scheduled
algorithms (SB and SP) led to better performance than either
random algorithm. In particular, the scheduled paced (SP)
algorithm achieved optimal performance for all metrics. We
explained, however, that the performance of the scheduled
algorithms would deteriorate if all root devices do not share
the same picture (NM) of the network state.

We outlined an approach to enable root devices to
bootstrap their NM. We suggested that control points might
also use this approach to replace M-Search SSDP_ALL
queries, thus avoiding the potential for an implosion of M-
Search responses. Further, we hinted that the NM-bootstrap
mechanism might be adapted to modulate redundancy and
load sharing in support of aggressive discovery in UPnP
networks. Further exploration of these ideas remains for
future work. We also suggest that these algorithms should be
investigated under various types and rates of failure.

REFERENCES

[1] Universal Plug and Play Device Architecture, Version 1.0, Microsoft,

June 8, 2000.
[2] Erik Guttman and James Kempf. Service Location Protocol, Version

2, RFC 2608bis, January 10, 2002.
[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-Wesley 1999.

Latest version is available from Sun.
[4] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, Session

Invitation Protocol, RFC 2543, March 1999.
[5] Stuart Cheshire, DNS-based Service Discovery, Internet Draft,

December 20, 2002.
[6] O Catrina, D. Thaler, B. Aboba, and E. Guttman, Zeroconf Multicast

Address Allocation Protocol, Internet Draft, October 22, 2002.
[7] Stuart Cheshire, Performing DNS queries via IP Multicast, Internet

Draft, December 20, 2002.
[8] James O. Henriksen, “An Introduction to SLXTM” Proceedings of the

1997 Winter Simulation Conference, ACM, Atlanta, Georgia,
December 7-10, 1997, pp. 559-566.

[9] Preston Hunt and Ulhas Warrier, “UPnP Applications Enhance
Mobile Functionality”, Intel Developer Update Magazine, Intel, April
2002, pp. 1-5. (Intel UPnP Software Development Kit available from:
http://www.intel.com/labs/connectivity/upnp/index.htm)

[10] T. Imieli´nski and S. Goel, “Dataspace - querying and monitoring
deeply networked collections of physical objects,” Tech. Rep. DCS-
TR-381, Rutgers University, July 1999.

[11] B. R. Badrinath and Pradeep Sudame. “Gathercast: The design and
implementation of a programmable aggregation mechanism for the
Internet”, Proceedings of IEEE International Conference on
Computer Communications and Networks (ICCCN), October 2000.

