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Abstract – Selected service-discovery systems allow clients to 
issue multicast queries to locate network devices and services. 
Qualifying devices and services respond directly to clients; thus, 
in a large network, potential exists for responses to implode on a 
client, overrunning available resources. To limit implosion, one 
service-discovery system, UPnP, permits clients to include a 
jitter bound in multicast (M-Search) queries. Qualifying devices 
use the jitter bound to randomize timing of their responses. 
Initially, clients lack sufficient knowledge to select an 
appropriate jitter bound, which varies with network size. In this 
paper, we characterize the performance of UPnP M-Search for 
various combinations of jitter bound and network size. In 
addition, we evaluate the performance and costs of four 
algorithms that might be used for adaptive jitter control. 
Finally, we suggest an alternative to M-Search for large 
networks. 
 

I.  INTRODUCTION 
 

Selected service-discovery systems allow clients to issue 
multicast queries to locate network devices and services [1, 
3]. Qualifying devices and services respond directly to 
clients; thus, in a large network, potential exists for responses 
to implode on a client, overrunning available resources. This 
implosion problem also arises in other protocols that support 
multicast queries and responses [4-7]. To limit implosion, 
one service-discovery system, Universal-Plug-and-Play1 
(UPnP) permits clients to include a jitter bound (MX) in 
multicast (M-Search) queries. Each qualifying device jitters 
its response time by randomly selecting a delay up to MX. 
Initially, clients lack sufficient knowledge to select an 
appropriate jitter bound, which varies with network size. 

In this paper, we model the UPnP M-Search mechanism 
and characterize performance for various combinations of 
jitter bound and network size. The resulting performance 
curves should help designers of UPnP clients to understand 
the effects of selecting particular jitter bounds. We also 
consider four algorithms that might be used to adaptively 
control jitter in UPnP M-Search. We compare the 
performance of the adaptive algorithms against each other 
and against a fixed jitter bound. We discuss the costs 
associated with adaptation. These costs lead us to suggest an 
alternative approach to M-Search for large networks. The 

                                                           
1 Certain commercial products and standards are identified in this paper to 
describe our study adequately. The National Institute of Standards and 
Technology neither recommends nor endorses these products or standards as 
the best available for the purpose. 

insights we provide should help designers of service-
discovery systems to create architectures that can scale across 
a variety of network sizes, while achieving effective and 
efficient performance. 

The remainder of this paper is organized as follows.  
Section II describes the UPnP M-Search mechanism, defines 
an experiment and related metrics to characterize M-Search 
performance, and illustrates M-Search performance for 
varying jitter bounds and network sizes.  Section III outlines 
four algorithms that might be used to adaptively adjust M-
Search jitter bounds, and compares the performance of the 
algorithms against each other and against a fixed jitter bound. 
Section III also discusses the costs and assumptions 
underlying adaptation.  Section IV suggests an alternative to 
M-Search for use in large networks.  Section V gives our 
conclusions. 

 

Fig. 1. General Operation of UPnP Discovery 
 

II.  CHARACTERIZING M-SEARCH PERFORMANCE 
 

Fig. 1 depicts the general operation of device and service 
discovery in UPnP. UPnP consists of two main elements: 
root devices (servers) and control points (clients). A UPnP 
network may contain r > 0 root devices. Each root device 
contains d > 0 embedded devices and k > 0 unique service 
types, where each device and service has a specific type. 
Each root device also contains a hierarchical description that 
defines the capabilities of 1 + d + k elements: the root device 
and each of its embedded devices and unique service types. 
The description can be rather lengthy; thus, UPnP provides a 
two-step process for obtaining descriptions. A control point 
first discovers devices or services of interest by type or 
identity, and then requests the related descriptions. 
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UPnP provides two discovery modes: lazy and aggressive. 
Lazy discovery uses periodic announcements sent by each 
root device on the UPnP multicast group (Notify in Fig. 1). 
At each announcement interval, each root device sends n (3 + 
2d + k) Notify messages to identify the root device (and its 
identity and type), each embedded device (by identity and 
type), and each unique service type (by type). The UPnP 
specification recommends a duplicate transmission factor, n, 
“due to the unreliable nature of UDP” (user-datagram 
protocol) [1]. Control points listen for announcements to 
discover the existence of various devices and services. The 
UPnP specification sets the announcement interval at 30 min. 
or more. For this reason, control points may use aggressive 
discovery to get an immediate picture of available services. 

Aggressive discovery commences when a control point 
multicasts an M-Search query, which specifies an interest 
(that can include specific devices, device types, service types, 
or all) and a jitter bound (MX in Fig. 1). Root devices listen 
for M-Search queries to determine if any contained items are 
of interest. Each root device sends 3n responses if the root 
device qualifies, and 2n and n responses respectively for each 
qualifying embedded device and service type. If the query 
asks for everything (SSDP_ALL), each root device responds 
with the same n (3 + 2d + k) messages used in lazy discovery. 
To mitigate a potential implosion of responses, each root 
device waits a random time, uniformly distributed in the 
range 0..MXs, before transmitting its responses in a burst. 
 
A.  Experiment Definition 
 
To characterize M-Search performance, we used SLXTM [8] 
to construct a simulation model representing the topology 
shown in Fig. 1, deployed in a 10-Mbps Ethernet. Since the 
UPnP specification allows implementation choices, we based 
those aspects of our model on UPnP software available 
publicly from Intel [9]. We allow the number of root devices, 
r, to vary from 10 to 200 by 10-step increments. Each root 
device includes an identical count of embedded devices (d = 
2) and service types (k = 3). We set n = 2, the default value in 
the Intel implementation of UPnP. We allow MX to vary 
from 2 to 40 in 2-s increments. For each combination of r and 
MX, an M-Search task in a single control point issues a query 
requesting SSDP_ALL, which elicits n (3 + 2d + k) = 20 200-
byte response messages from each root device; thus, 
aggregate implosion ranges from 200 (r = 10) to 4000 (r = 
200) response messages. (To keep our graphs legible, we 
display results over only r = 10..100 and MX = 2..20.) We 
limit the M-Search task to buffer no more than 40 messages, 
dropping the excess. We allow the control point task to 
execute every 5 ms, processing one response message at each 
execution (200 messages/s maximum rate). For each 
message, the task examines a cache to see if a new discovery 
occurs, adding items to the cache as required. The task takes 
c ms to process a message, where c varies with the cache 

size. When finished, the task reschedules itself to execute in 
5 – c ms. If c > 5, the task executes immediately.  

    Fig. 2. Overall discovery effectiveness (E) compared against 
discovery effectiveness by entity type: root devices (Er), embedded devices 
(Ed), and services (Es). [MX = 10 s] 

 
B.  M-Search Performance 
 
We measure system performance with four metrics: 
discovery effectiveness (E), discovery latency (L), buffer 
utilization (B), and processor usage (P). Given a network 
comprising e = r + rd + rk entities and assuming that a 
control point discovers f  < e entities from responses to an M-
Search, then E = f / e. We can also track discovery 
effectiveness by entity type, root devices (Er), embedded 
devices (Ed), and services (Es) as shown in Fig. 2. In the Intel 
implementation, each root device sends M-Search responses 
in the same order (3n then 2dn then kn) and since responses 
earliest in the sequence are more likely to find buffer space 
available at the control point, root devices are more likely to 
be discovered than either embedded devices (next most 
likely) or services (least likely). 

Fig. 2 also reveals that randomly jittering responses does 
not ensure E = 1, even when MX is set to a seemingly 
suitable value. When r = 100, a total of 2000 response 
messages will implode on the control point, which processes 
200 messages/s, suggesting that 10s (2000/200) might be a 
suitable value for MX. Unfortunately, since each root device 
picks a random time to respond and then sends a burst of 20 
response messages, collision periods can occur during which 
receive buffers are overrun in the control point. Fig. 3 
displays the problem. 

Even at MX = 20s, collisions occur with sufficient 
frequency that E decays significantly beyond r = 50. 
Collisions lead to increased buffer occupancy (Fig. 4), which 
leads to increased likelihood of message drops. Periods of 
high buffer occupancy (and therefore message loss) tend to 
persist, as incoming messages arrive in bursts at random 
intervals, while the M-Search task reduces the buffer backlog 
at a steady rate. 
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Fig. 3. Discovery effectiveness (E) for various values of MX (2s to 20s in 
2s increments) as the number or root devices (r) increases. 

Fig. 4. Average buffer occupancy (B) as a percentage of available buffers 
(40 messages in this case) for various values of MX  (2s to 20s in 2s 
increments) as the number or root devices (r) increases. 

Fig. 5. Average discovery latency (L) for various values of MX (2s to 20s 
in 2s increments) as the number or root devices (r) increases. 

 
Buffer size at the control point can be augmented to 

accommodate additional responses; however a suitable buffer 
size may be difficult to determine given the random nature of 
response jitter (and unknown network size).  Instead, a 

control point could increase MX; but then, as Fig. 5 shows, 
discovery latency will grow. 

We define discovery latency (L) as the time that elapses 
between successive discoveries of new entities in the 
network. As Fig. 5 shows, when MX is large compared to 
network size the gap between new discoveries grows for a 
control point. An increased MX also leads to fewer buffer 
overruns, which increases the discovery effectiveness for a 
control point. As discovery effectiveness increases, the 
discovery cache in the control point increases in size, which 
causes the M-Search task to spend more processor cycles 
examining each response message (Fig. 6). This increase 
occurs because the M-Search task must look through more 
cache entries to determine if a new entity has been 
discovered, and to insert a related cache entry if needed. For 
relatively large values of MX, processor utilization increases 
linearly with network size, though this would change if we 
modeled more efficient search algorithms. For relatively 
small values of MX, growth in processor utilization levels off 
with the size of the discovery cache maintained by the M-
Search task. 

 
III.  ADAPTIVE JITTER CONTROL 

 
We propose four algorithms for adaptive-jitter control, and 
then illustrate the performance arising from each. We also 
discuss the costs and assumptions underlying the algorithms. 
Some other algorithms to address multicast query-response 
implosion can be found in the literature [10,11].  
 
A.  Four Adaptive Jitter-Control Algorithms 
 
In adaptive-jitter control, each root device independently 
estimates the time it will take for all root devices to respond 
to each M-Search query. Each root device then uses its 
estimate to determine a time to send its own responses (if 
any). Included in each response message is a value 
recommending how long the control-point M-Search task 
should listen for responses. With this approach, the M-Search 
task need not guess an appropriate MX value. 

Each root device listens on the UPnP multicast group for 
Notify messages (which include a caching time, or max-age) 
sent by all root devices, and builds a map (NM) of devices 
and services in the network. For each root device, NM 
includes: the identity and type of the root device and all 
embedded devices and unique service types, a max-age, and 
an estimate of the redundant transmission factor (n). 
Estimates of n exploit the fact that in the Intel 
implementation each message is sent n times before the next 
message. Listening root devices apply a time threshold to 
identify duplicate messages and then compute an average n 
for each announcing root device. 
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Fig. 6. Average processor time (P) in seconds/message for a Control 
Point M-Search task to examine a response for various values of MX (2s to 
20s in 2s increments) as the number or root devices (r) increases. 

 
M-Search queries issued by the M-Search task include a 

rate, R, at which the task can consume messages, and also an 
MX > 0. Upon receiving an M-Search query, a root device 
cycles through its NM to estimate how many response 
messages will be sent by all root devices, using R to also 
estimate when the last set of responses should commence 
(Jstart) and finish (Jend) – under an assumption that 
messages will be sent consecutively at rate R. During this 
process, a root device can also note a time (Stx) when it 
should send its own responses – under an assumption that 
root devices will send messages sequentially in the ascending 
order of their unique identities. Using this information, we 
devised four adaptive jitter-control algorithms: Random Burst 
(RB), Random Paced (RP), Scheduled Burst (SB), and 
Scheduled Paced (SP). 

In the random algorithms (RB and RP), a root device 
selects a time, Tr, randomly distributed uniformly on the 
interval [0,Jstart], to send its response messages. The root 
device includes Jend in each response so that the M-Search 
task will learn an appropriate time interval to listen. The root 
device will not respond if 0 < MX < Tr. In the RB variant of 
the algorithm, the root device bursts its response messages. In 
the RP variant, the root device paces its responses at rate R. 

In the scheduled algorithms (SB and SP), a root device 
sends its response messages at Stx; however, the root device 
will not respond if 0 < MX < Stx. Response messages are sent 
in a burst (SB) or at rate R (SP). The root device includes 
Jend in each response message. 
 
B.  Performance of Adaptive Jitter Control 

 
Fig. 7 illustrates discovery effectiveness (E) for each adaptive 
jitter-control algorithm as the number of root devices (r) 
increases from 10 to 300. For comparison, we include the 
performance of a fixed MX = 33s, which is the Jstart value 
estimated by each root device when r = 300. 

Scheduling transmissions achieves full effectiveness (E = 
1). On the other hand, randomizing transmissions leads to 

collisions in the receive buffers, and then to buffer overflows 
and lost discoveries. Pacing responses (RP) results in fewer 
buffer overflows, but fails to eliminate them. While RP more 
closely matches arrival rate with service rate, Fig. 8 indicates 
a nearly identical average buffer occupancy for RP and RB. 

Fig. 7. Discovery effectiveness for four adaptive jitter control algorithms 
and one fixed jitter bound as the number of root devices increases 

Fig. 8. Average buffer occupancy for various jitter-control algorithms as 
the number of root devices increases. 

 
Buffer utilization is very low for SP because scheduling 

eliminates collisions and responses arrive at the rate at which 
the M-Search task can process them. While SB avoids 
collisions, responses arrive in (20-message) batches, leading 
to a higher average buffer utilization. Fig. 8 also shows that 
each of the adaptive jitter-control algorithms yields a nearly 
stable average buffer utilization (but at different occupancy 
levels), while buffer utilization for a fixed MX varies with the 
relationship between MX and r. 

Fig. 9 illustrates that all the adaptive jitter-control 
algorithms provide consistently low average discovery 
latency, L, despite variation in network size, which is not the 
case for a fixed MX, where latency varies with the 
relationship between MX and r. The scheduled algorithms 
(SB and SP) perform slightly better than the random 
algorithms (RB and RP) because buffer overflows resulting 
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from jitter randomization cause some discoveries to be lost, 
which tends to lengthen the time between new discoveries. 

Fig. 9. Average discovery latency of various jitter-control algorithms as 
the number of root devices increases  

Fig. 10. Average processor seconds per message used by the M-Search 
task for various jitter-control algorithms and increasing network size. 

 
The scheduled algorithms also lead to some serendipitous 

effects on processor utilization in the M-Search task (Fig. 
10).  Since scheduled responses arrive in order, the M-Search 
task need not conduct a search of its discovery cache for each 
response message. Instead, the M-Search task checks to see if 
a response can be inserted into the cache at the current 
insertion point. Only if this is not the case does the M-Search 
task need to search its cache. In our experiments all 
scheduled responses arrived in the expected order; thus, Fig. 
10 shows that both SB and SP consume a small, fixed 
amount of processor time for each message. 

Fig. 10 also shows that the cache search required by the 
random algorithms causes processor utilization to increase as 
the number of discovered entities increase. Processor 
utilization for RP always exceeds that for RB because the RP 
algorithm discovers a greater percentage of entities. Random 
jitter with a fixed MX = 33s uses more processor time than 
either RP or RB up until about r = 200, where RP proves 

more effective and thus requires more processor time. The 
rate of increase in processor utilization for the fixed MX 
continues to decline, reaching the same value as RB when r = 
300 (and Jstart = MX = 33s). 
 
C.  Costs and Caveats 

 
Adaptive jitter control comes with two costs: memory and 
processing time in root devices. Each root device creates, 
stores, and maintains a network map (NM) of size 
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where h is the cache-header size, p is the root-device header 
size, q is per-entry content size, r is the number of root 
devices, and di, ki, and ti represent respectively the number of 
embedded devices, service types, and device types 
maintained by root device i. In our experiments, S varies 
from about 1.2 (r = 10) to 37 (r = 300) Kbytes.  

To process an M-Search query, a root device must scan 
NM to estimate the likely number of responses that will be 
issued by all root devices. During the scan, a root device also 
purges stale entries. Thus, for each M-Search query a root 
device uses processor time 
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where x is processor time to scan one entry, y is processor 
time to purge one root-device, and O is the number of stale 
root-device entries found during the scan. In our experiments, 
for SSDP_ALL queries with no stale entries, C varies 
between 0.3 (r = 10) and 9 (r = 300) ms. 

In addition to memory and processing costs, the scheduled 
algorithms assume that each root device has the same 
knowledge about network state (NM). Absent this 
assumption, root devices would schedule collisions, leading 
to lower discovery effectiveness. This same-NM assumption 
should hold in steady state, where all root devices have had a 
chance to announce themselves and where changes occur 
infrequently. Of course, when a root device enters a network 
it must acquire NM to participate effectively in adaptive jitter 
control. 
 

IV. DISCOVERY IN LARGE NETWORKS 
 

Most discovery protocols provide for recurring 
announcements at a known interval. For example, the Jini 
protocol recommends announcements every 120s [11]. 
Recurring announcements permit a network device to listen 
for a period of time over which a reasonably complete NM 
might be constructed. Unfortunately, the minimum 
announcement interval specified for UPnP is 30 min., which 
might prove too long a period for a device to wait before 
participating on the network. To compensate for this lengthy 
announcement interval, UPnP provides the M-Search 

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

10 50 90 130 170 210 250 290
r

P
(a

vg
. s

/m
sg

)

RP

RB

Fixed MX = 33

SPSB

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

10 50 90 130 170 210 250 290
r

P
(a

vg
. s

/m
sg

)

RP

RB

Fixed MX = 33

SPSB

0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.4
0.45
0.5

10 50 90 130 170 210 250 290
r

L
 (s

)

Fixed MX = 33

RB RP SB SP
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.4
0.45
0.5

10 50 90 130 170 210 250 290
r

L
 (s

)

Fixed MX = 33

RB RP SB SP



mechanism so that network devices can attempt to gain a 
sense of the NM on demand. We have shown, though, 
limitations of the M-Search as a means to find all devices and 
services on the network. Some other discovery protocols 
[2,3] include feedback mechanisms within their multicast 
queries in order to provide a means of dampening responses. 
Using such dampening mechanisms, a short repeated burst of 
multicast queries (for example, Jini recommends seven 
queries at intervals of five seconds) might be used to obtain a 
reasonably complete NM (ignoring the possibility of 
temporary node and channel failures). Unfortunately, UPnP 
includes none of these mechanisms; thus, acquiring the NM 
needed to permit effective participation in adaptive jitter 
control for M-Search queries seems to require using the 
regular UPnP M-Search. Since we have already shown UPnP 
M-Search to be ineffective for this purpose, we propose an 
alternative to M-Search for NM-bootstrap and for general use 
in large networks. 

Suppose that on startup a root device initiates a network 
mapping (NM) service with probability W. In that case, the 
network will contain only rW NM services. Then a control 
point, or a newly starting root device, can use M-Search (in 
fixed or adaptive form) to query only for instances of NM 
services. Each qualifying NM service can respond with the 
count of root devices, embedded devices, and service types 
known to it. Using this information, a querying node can 
select one NM service and use http-GET (HyperText Transfer 
Protocol) to retrieve its NM. Alternatively, the querying node 
may issue http-GETs to multiple NM services, and then 
merge the results into a signal NM. After retrieving a NM, a 
root device should be sufficiently bootstrapped to participate 
in adaptive M-Search. For a control point, querying for NM 
services will reduce (or eliminate) the need to issue 
SSDP_ALL M-Search queries. 

 A further advantage of using NM services can accrue as 
network volatility increases. As the need arises, due to 
increase in load or in network or node failures, a root device 
can choose to start a NM service to increase redundancy or to 
share the load from an increasing number of client queries. 
Similarly, as volatility diminishes or as network size 
decreases, root devices with a running NM service can elect 
to terminate the service in order to reduce network overhead. 

 
V.  CONCLUSIONS 

 
Given the UPnP M-Search mechanism, we illustrated 
relationships among network size (r), jitter bound (MX), 
discovery effectiveness (E) and latency (L), and buffer (B) 
and processor (P) utilization. Specifically, we showed how 
an inappropriate jitter bound (MX value) in UPnP M-Search 
queries could significantly reduce discovery effectiveness or 
increase discovery latency. We outlined four algorithms that 
might be used for adaptive jitter control, and we explained 
the storage and processing costs associated with adaptation. 
We compared the performance of the adaptive algorithms 

against each other and against a fixed MX value. The random 
paced (RP) algorithm yielded increased discovery 
effectiveness over random burst (RB). Both scheduled 
algorithms (SB and SP) led to better performance than either 
random algorithm. In particular, the scheduled paced (SP) 
algorithm achieved optimal performance for all metrics. We 
explained, however, that the performance of the scheduled 
algorithms would deteriorate if all root devices do not share 
the same picture (NM) of the network state. 

We outlined an approach to enable root devices to 
bootstrap their NM. We suggested that control points might 
also use this approach to replace M-Search SSDP_ALL 
queries, thus avoiding the potential for an implosion of M-
Search responses. Further, we hinted that the NM-bootstrap 
mechanism might be adapted to modulate redundancy and 
load sharing in support of aggressive discovery in UPnP 
networks. Further exploration of these ideas remains for 
future work. We also suggest that these algorithms should be 
investigated under various types and rates of failure. 
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