
Chapter 5 A Meta-Model for Concurrent Designs

The previous chapter defined a meta-model for describing and analyzing

specifications based on data/control flow diagrams. The current chapter defines a

meta-model for representing and reasoning about concurrent designs, and for describing

the characteristics of target environments in which concurrent designs might execute.

The design process produces and consumes large quantities of information on

which design decisions might be based. Whether and how this information can be

represented is central to the type of problems that can be considered and solved. The

design meta-model provides a basis for describing concurrent designs generated using

design-decision knowledge and for reasoning about those designs using automated

methods. The design meta-model also provides for traceability between a concurrent

design and elements of the data/control flow diagram from which that design is

generated. In addition, the design meta-model enables design decisions, made with

respect to elements of the design, and design rationale to be captured. Before giving a

detailed specification of the design meta-model, an intuitive discussion of the main

concepts is presented. The intuitive discussion introduces a diagrammatic notation for

the main entities and relationships included in the design meta-model.

5.1 A Diagrammatic View of the Design Meta-Model

Most of the entities and relationships from the design meta-model can be

represented in a diagrammatic form using a variation of the graphical notation defined by

Gomaa in his book, Software Design Methods for Concurrent and Real-Time Systems.

[Gomaa93] A summary of this notation, and its application to represent concepts in the

design meta-model, is provided here for two reasons. First, the notation can be used to

represent entities and relationships in the design meta-model in a form the can be grasped

easily by readers. Second, a number of examples discussed later, in several appendices to

this dissertation, use the notation. Figure 19 illustrates the main elements of the design

notation. Any symbol shown in Figure 19 can be given a name that corresponds to the

name attribute for the specific design element being represented.

The Task symbol, shown in Figure 19 (a), represents an independent thread of

control within a concurrent design. An IHM, or information hiding module, can be

drawn using the corresponding symbol in Figure 19 (i). An arbitrary IHM can provide as

many operations as required, each represented as a small rectangle protruding from the

IHM symbol. Each operation must be labeled. The specific IHM symbol shown in Figure

19 (i) encompasses four operations, although the operations are not labeled in this case.

Queues and priority queues, used to buffer messages either in the order of arrival or in a

priority order, can be represented using the corresponding symbols provided in Figure 19

(b) and (c), respectively. Each line entering a queue or priority queue represents a distinct

type of queued message, that is, a message where the sender does not suspend waiting for

113

114

a. Task

b. Queue and Queued Message

c. Priority Queue and Queued Message

d. Tightly-Coupled Message

e. Tightly-Coupled Message
 with Tightly-Coupled Reply

f. Queue and Queued Message
with Tightly-Coupled Reply

g. Event (i.e., interrupt, timer expiration, or
 software signal)

h. Data or Operation Invocation

i. Information Hiding Module
with four Operations

Figure 19. A Diagrammatic Notation for Representing Selected Entities from the
Design Meta-Model

the receiver to accept the message. A tightly-coupled message, that is a message for

which the sender suspends until the receiver has accepted the message, can be shown

using the corresponding symbol from Figure 19 (d). Figure 19 (e) gives a symbol used to

denote a tightly-coupled message sent from left to right with a tightly-coupled reply

returning from the right to the left. In cases such as this, the sender of a message

suspends not until the receiver accepts the message, but until the receiver returns another

message in reply to the message sent by the sender. Figure 19 (f) provides a symbol to

denote a queued message sent from left to right for which a reply will be awaited by the

sender. Each occurrence of input/output data can be drawn as a directed arc, as in Figure

19 (h), while the existence of an event can be denoted using a directed, zigzag line, as in

Figure 19 (g). Only two entities, parameters and message data, from the design

meta-model cannot be portrayed directly using the diagrammatic notation given in Figure

19.

Many relationships from the design meta-model can be represented

diagrammatically using combinations of the symbols shown in Figure 19. Figures 20, 21,

and 22 illustrate some combinations representing relationships included within the design

meta-model. A task is said to contain a module whenever that task is the only thread of

control that executes code within the module. This relationship, Contains in Figure 20

(a), is depicted by placing an IHM symbol within the symbol for the containing task. If

the thread of control for a task executes a specific operation within a module, the task is

said to invoke the operation. This relationship, Invokes in Figure 20 (b), is denoted by

115

116

Select

Clear

Read

Set

a. Contains

b. Accesses and Invokes

c. Serves and Requires

d. Provides

Figure 20. A Diagrammatic Notation for Representing Selected Relationships from the
Design Meta-Model (Part One of Three)

drawing a directed arc from a task to a specific operation within an IHM. Whenever a

task invokes any operation in a module then the task is said to access the module. This

relationship, Accesses, is a summary of the Invokes relationship between a task and

operations within an IHM. Any task that has at least one Invokes relationship with an

operation within an IHM, also has an Accesses relationship with the IHM. Similarly,

whenever an operation in one module calls an operation in a second module, the calling

operation is said to require the called operation. This relationship, Requires in Figure 20

(c), is shown by drawing a directed arc from an IHM to a specific operation within an

IHM. Given an IHM that provides at least one operation that is required by another IHM,

the first IHM is said to serve the second IHM. An IHM provides one operation for each

named entry point that is externally accessible. This relationship, Provides in Figure 20

(d), is illustrated simply by labeling the operations protruding from an IHM with the

name of each operation.

Referring to Figure 21 (a), an example is given of the Sends and Receives

relationships between two tasks and the message around which they synchronize. The

task on the left, Sender, sends a tightly-coupled message and then waits until that

message is received by the task on the right, Receiver. The next example, given in Figure

21 (b), illustrates the Accepts relationship (incoming zigzag line), where a task receives

an event from the external environment, and shows the Generates relationship (outgoing

zigzag line), where the same task sends an event. Similarly, the next example, shown in

Figure 21 (c) shows the Reads (incoming directed arc) and Writes (outgoing directed arc)

117

118

Sender Receiver
a. Sends
 and
 Receives

b. Accepts
 and
 Generates

c. Reads
 and
 Writes

d. Encapsulates

e. Encloses

f. Consumes

g. Owns

Figure 21. A Diagrammatic Notation for Representing Selected Relationships from the
Design Meta-Model (Part Two of Three)

relationships, where a task accepts data from and sends data to the external environment.

The final four examples given in Figure 21 illustrate how to depict various

relationships, included within the design meta-model, involving queues and priority

queues. The Encapsulates and Encloses relationships, for queues and priority queues,

respectively, are used to simulate message queues when the target environment does not

provide a message queuing mechanism. Figure 21 (d) shows how to depict the

Encapsulates relationship by placing the symbol for a queue within the symbol for the

task that controls the queue. Similarly, Figure 21 (e) shows how to depict the Encloses

relationship for a priority queue and enclosing task. The Consumes and Owns

relationships, as shown in Figure 21 (f) and (g), are used to depict queues and priority

queues, respectively, that are processed by a receiving task in cases where the target

environment does provide a mechanism for first-in, first-out queues and for priority

queues.

Figure 22 illustrates how some more complex relationships can be depicted with

diagrams. Figure 22 (a) shows how to depict a request-response transaction between two

tasks as the exchange of two tightly-coupled messages, one sent in reply to the other.

One task, Requester, sends a tightly-coupled message that another task, Replier, receives.

The task Replier answers the received tightly-coupled message; and thus sends a

tightly-coupled message (as a reply) that the task Requester receives. A second example,

shown in Figure 22 (b), illustrates how a client-server relationship between multiple

client tasks and a single server task can be drawn. Each task, Client, sends a queued

119

120

Requester Replier

Client Server

Sender Receiver

Queue-Control
Task

a. Tightly-Coupled Message
 Answers
 Tightly-Coupled Message

b. Tightly-Coupled Message
 Answers
 Queued Message

c. Queue Holds Queued
 Messages

d. Priority Queue Heads
 Queues

e. TIghtly-Coupled Message
 Carries
 Queued Message

Figure 22. A Diagrammatic Notation for Representing Selected Relationships from the
Design Meta-Model (Part Three of Three)

message that the task Server receives. The task Server answers the received, queued

message; and thus sends a tightly-coupled message (as a reply) that the task Client

receives.

Figures 22 (c) and (d) show how to draw some relationships involving queues,

priority queues, and queued messages. Figure 22 (c) shows a single, first-in, first-out

(FIFO) queue that holds four types of queued message. Each type of queued message

arrives from a separate type of task. Figure 22 (d) shows a single priority queue that

accepts queued messages at four distinct priorities. In the example, one type of queued

message arrives at each priority; however, multiple types of messages can arrive at any

given priority. Also, notice that the symbol for the priority queue can be viewed as if

four FIFO queues, placed in parallel, compose the priority queue. This composition

represents the Heads relationship between a priority queue and its constituent FIFO

queues. Other views of a priority queue are possible, but the parallel FIFO view is

adopted for the design meta-model defined in this dissertation.

Figure 22 (e) illustrates how a queue-control task, used to implement a FIFO

queue, can be depicted on a diagram. A task, Sender, sends a tightly-coupled message to

a queue-control task. The tightly-coupled message is said to carry a queued message

within it. The queue-control task removes the queued message and places it within an

internal list. When another task, Receiver, wishes to accept the next queued message

from the queue-control task, then Receiver sends a tightly-coupled message to the

queue-control task and awaits a reply. When a queued message is ready for delivery, the

121

queue-control task extracts the queued message from its internal list, and then passes that

queued message within a tightly-coupled message that replies to the earlier

tightly-coupled message sent by the task Receiver.

The remaining relationships in the design meta-model cannot be illustrated using

the symbols given in Figure 19. Relationships involving parameters and message data

items cannot be represented because no symbols are defined to represent either entity.

While these relationships involving parameters and message data items are not

expressible using the diagrammatic notation, they can be represented in the

machine-processible form of the design meta-model, and can also be rendered within task

behavior specifications and module specifications that are output from the

design-generation process.

The previous paragraphs provided an intuitive picture of the entities and

relationships that can be used to model concurrent designs. Next, the design meta-model

is defined with greater precision.

5.2 Modeling Concurrent Designs

Two entity-relationship (E-R) diagrams and three tables define the design

meta-model. The two diagrams and the first table encompass the meta-model for

concurrent designs, while the remaining two tables describe a model for target

environments. The meta-model for concurrent designs could be described with a single

E-R diagram; however, the use of two overlapping diagrams leads to a clearer exposition.

The first E-R diagram, shown as Figure 23, identifies the basic elements that make up a

122

concurrent design, shows the attributes for each of those elements, depicts the inheritance

relationships among those elements, and indicates the relationships between any design

element and two other entities: 1) decisions made about the design element and 2)

specification elements from which the design element derives. The second E-R diagram,

shown as Figure 24, depicts the relationships between specific design entities.

The notation used in the E-R diagrams depicted in Figures 23 and 24 is

conventional. Entities are shown using rectangles labeled with the entity name; attributes

are illustrated with ovals surrounding the attribute name; inheritance relationships are

drawn as inverted triangles enclosing the label IS-A, with directed arcs pointing the way

up the inheritance hierarchy; relationships other than inheritance are depicted through

diamonds that enclose the name of the relationship. A line connects an entity to an

attribute when that attribute is a part of the entity. A line connects an entity to a

relationship (either an IS-A relationship or an arbitrary relationship) when the entity

participates in the relationship. Each line connecting an entity to an arbitrary relationship

denotes a cardinality. Specific cardinalities used in Figures 23 and 24 include: 1 (exactly

one); 0 or 1 (at most one); N (zero or more); N, N > 0 (at least one); and N, N > 1 (at least

two).

5.2.1 Concurrent Design Entities

Each entity composing the meta-model for concurrent designs is a specialization

of the entity named Design Element (see Figure 23). A Design Element possesses two

attributes: name provides a unique label for the Design Element among all elements

123

within a specific design; object identifier provides a unique reference for the Design

Element among all objects existing at a given time within the knowledge base that

contains the Design Element. Each Design Element participates in at least two

relationships. One relationship, shown as Tracks in Figure 23, links a Design Element to

zero or more decisions (represented by the entity Decision) made concerning that Design

Element. A Decision has three attributes: 1) the rule name attribute identifies the rule

that made the decision; 2) the action attribute defines the action taken as a result of the

decision; 3) the rationale attribute contains a justification for the decision. A second

relationship, shown as Traces To/From in Figure 23, links elements from a data/control

flow diagram (specifically, Specification Element, the concept of the same name as

defined in the concept hierarchy discussed in Chapter 4) to corresponding elements in the

design (Design Element). One instance of Specification Element can lead to several

instances of Design Element, and each instance of Design Element can be derived from

several instances of Specification Element; therefore, the Traces To/From relationship is

many-to-many.

The Traces To/From relationship between instances of Specification Element and

instances of Design Element is actually a generalization of several more specific

relationships that serve to restrict the traceability between a specification and a concurrent

design. The more specific relationships that restrict Traces To/From are shown in Table

3. Each row of the table contains two columns. The first column identifies a type of

design element, while the second column identifies a set of specification element types

124

125

Design Element
Traces

To/From
Specification

Element
Tracks

name object identifier

IS-APriority Queue

Queue

Repeatable Design
Element

Directed Design
Element

Parameter

Operation

IS-AIS-A

Task

IHM Data

Tightly-Coupled
Message

Message

IS-A

Event

Queued Message

cardinality

type

type

periods

priority

priority

instance

from

to

processor

type

interval

rule name

Decision

action

rationale

N N
N1

priority

Message
Data

Figure 23. An Entity-Relationship Diagram Depicting the Design Meta-Model
(Part One of Two)

from which the design element can be derived. Each row of the table, then, defines a

restriction on the traceability between specification elements and design elements. For

example, design elements of type Task can only be derived from the specification

elements of type Transformation.

Moving down the inheritance tree shown in Figure 23, five leaf-level entities

derive directly from Design Element. The entity Priority Queue allows a concurrent

design to include a message queue that can hold messages at various priorities. The

entity Queue can be used to represent a message queue that can hold messages at one

specific priority (denoted by the attribute priority). The entity Message Data represents

data that can be included in messages sent between tasks. The entity Operation is used to

represent procedures within the software modules composing a concurrent design. The

entity Parameter allows parameters for procedures to be depicted within a design.

Two abstract entities are also derived directly from Design Element. The abstract

entity Repeatable Design Element can be used to represent elements within a design that

can have multiple instances. The attribute cardinality denotes the number of possible

instances for a specific Repeatable Design Element. The attribute instance enables

specific instances of multi-instance design elements to be identified. The abstract entity

Directed Design Element can be used to represent components within a concurrent design

that have a source (denoted using the attribute from) and a sink (denoted using the

attribute to).

126

Table 3. Restrictions on Traceability Between Designs and Specifications

Design Element Specification Elements

Task Transformation

IHM Data Store
Directed Arc
Transformation
Two-Way Arc

Message Control Event Flow
Internal Data Flow
Signal

Operation Data-Store Data Flow
External Data Flow
Interrupt
Transformation
Update

Parameter

Control Event Flow
Data Store
External Data Flow
Internal Data Flow
Signal

Message Data Control Event Flow
Internal Data Flow
Signal

Event Control Event Flow
Normally-Named Event Flow

Data External Data Flow

Priority Queue Signal
Stimulus
Transformation

Queue Signal
Stimulus
Transformation

127

Two entities inherit the abstract entity Repeatable Design Element. The entity

IHM (for Information Hiding Module) enables software modules to be represented within

a concurrent design. Each IHM contains an attribute, type, used to denote the basis for

forming the IHM. For example, an IHM can encapsulate a device interface or a user

interface, can hide the implementation details of a data structure, can abstract the details

of a state-transition diagram, or can enclose the processing associated with an algorithm.

The entity Task enables multiple, independent threads of control to be represented

within a concurrent design. Execution models for real-time systems present a rich variety

of facilities for inter-task exchange of messages and events. The capabilities and

restrictions placed on Tasks regarding the sending and receiving of events and messages

are largely outside the scope of the concurrent design meta-model presented in this

dissertation; thus, other than the assumptions and restrictions noted below, no specific

limitations are assumed regarding the ability of a Task to wait for and respond to arriving

events and messages, either queued or tightly-coupled.

The entity Task has several attributes. The attribute type denotes the basis for

forming the Task. For example, a Task can perform periodic polling of devices, can

process device interrupts, can process asynchronous events, can control access to shared

resources or software modules, can decouple communications between tasks, or can

perform periodic execution of algorithms. The attribute periods can contain the set of

execution cycles for periodic tasks. Multiple periods might be required whenever the

logic internal to a task activates itself with various periodicities, depending on specific

128

requirements of the application. The attribute priority can hold the precedence with

which a task will be selected for execution when multiple tasks are eligible to run. The

attribute processor enables a task to be assigned to a specific processor when the software

will execute on a multiprocessor system.

Three entities inherit the abstract entity Directed Design Element. The entity Data

enables information exchanged between the software under design and its environment to

be represented. The entity Event allows three forms of asynchronous signal to be

depicted: 1) interrupts from hardware, 2) timer expirations, and 3) software signals

exchanged between tasks. An attribute, type, is used to distinguish between the three

forms of Event. The attribute interval can hold the cycle time for timer expirations. The

entity Message enables representation of information exchanged between tasks. Two

types of message can be distinguished using separate entities. The entity Queued

Message enables the representation of loosely-coupled communications between tasks.

The attribute priority allows loosely-coupled messages arriving for a task to be classified

by precedence. The entity Tightly-Coupled Message permits the depiction of

synchronized message exchange between tasks.

5.2.2 Relationships Among Concurrent Design Entities

Aside from the inheritance relationships and the relationships named Tracks and

Traces To/From depicted in Figure 23, the design meta-model includes a number of

additional relationships, as shown in Figure 24. These additional relationships increase

the richness and complexity of the design meta-model. Each relationship in the design

129

meta-model should be understood to be bi-directional, including both the relationship as

shown and its inverse. For example, referring to Figure 23, the relationship Traces

To/From can be expressed in two ways: 1) a Specification Element Traces To a Design

Element and 2) a Design Element Traces From a Specification Element. Similarly, the

relationship Tracks can be expressed in two forms: 1) a Design Element Tracks a

Decision and 2) a Decision Is Tracked By a Design Element.1 While this bi-directionality

is an integral part of the design meta-model, each relationship shown in Figures 23 and

24 illustrates only one direction in order to simplify the diagram. The inverse direction

for each relationship should be assumed to exist. For the IS-A relationship, the direction

shown in the figures corresponds to the view up the inheritance tree, while the assumed

inverse relationship corresponds to the view down the inheritance tree. For example, the

relationship Queued Message IS-A Message has a corresponding inverse, such as

Message Has-A-Descendent Queued Message.

Referring to Figure 24, the entity IHM, representing information-hiding modules,

is party to numerous relationships. First, the relationship stating that a Task Contains an

IHM denotes that the Task is the sole thread of control that executes the IHM, while its

inverse, Contained By, ensures that the related IHM can be executed through the control

of only one task. The meta-model does not currently provide a relationship for tasks that

can be placed within IHMs because such arrangements are considered only to be one

1 The E-R Notation, intended to show the relationships among entities in a natural,
readable fashion, leads to ambiguities within the diagrams depicted here. For example, in
Figure 24, does a Task Contain an IHM or does an IHM Contain a Task? These
ambiguities are resolved in the accompanying textual description.

130

131

IH
M

S
er

ve
s

O
pe

ra
tio

n

T
as

k

P
ar

am
et

er

M
es

sa
ge

P
ro

vi
de

s

R
eq

ui
re

s

A
cc

es
se

s
C

on
ta

in
s

A
lte

rs

Y
ie

ld
s

T
ak

es

In
vo

ke
s

In
cl

ud
es

S
en

ds

R
ec

ei
ve

s

IS
-A

Q
ue

ue
d

M
es

sa
ge

T
ig

ht
ly

-C
ou

pl
ed

M
es

sa
ge

C
ar

ri
es

A
ns

w
er

s
Q

ue
ue

H
ol

ds

C
on

su
m

es

P
ri

or
ity

 Q
ue

ue

D
at

a

E
ve

nt

H
ea

ds

O
w

ns

G
en

er
at

es
A

cc
ep

ts

R
ea

ds

W
ri

te
s

1
N

0
or

 1

N
N

,
N

 >
 0

N

N

N

N
N

1

N

N

1 1

N
N

1 1

N
N

N

1
1

1

N

1
N

,
N

 >
 1

1

N

1
N

,
N

>
=

 0

0
or

 1

1

1
N

N

N

1 1
1 N

N

N

E
nc

ap
su

la
te

s

E
nc

lo
se

s

1
1

0
or

 1
0

or
 1

M
es

sa
ge

D
at

a

Figure 24. An Entity-Relationship Diagram Depicting the Design Meta-Model
(Part Two of Two)

means of implementing synchronization internal to an IHM and, thus, becomes a detailed

design issue. Second, the relationship Accesses represents the use by a task of the

services of an IHM that is shared among multiple tasks. The inverse relationship,

Accessed By, can be used to show that an IHM provides services to a task. A third

relationship of interest, Serves, can be used to show when an IHM, shared by mutliple

tasks, provides operations used by another IHM, which is then also shared, indirectly by

multiple tasks. The inverse relationship is known as Served By. On a more detailed

level, an IHM can use zero or more specific operations provided by another IHM. The

relationship Requires and its inverse Required By allow depiction of these more detailed

relationships between IHMs. Conversely, an IHM can provide specific operations for use

by client tasks and by other IHMs. The Provides relationship, and its inverse, Provided

By, allows operations to be allocated to specific IHMs. Each operation can be provided

only by a single IHM; each IHM must provide at least one operation. Operations

provided by IHMs can be accessed by multiple tasks; the relationship Invokes, and its

inverse, Invoked By, enables these accesses to be depicted. Zero or more tasks can

invoke a specific operation. Each operation can be invoked by zero or more tasks.

A set of three relationships enable parameters to be associated with operations.

An input parameter to an operation is denoted using the relationship Takes, and its

inverse, Taken By. An output parameter from an operation is depicted with the

relationship Yields, and its inverse, Yielded By. An input/output parameter for an

operation is shown through the relationship Alters, and its inverse, Altered By. Any

132

operation can be involved in zero or more relationships of each of these types. A specific

parameter can be either an input parameter, an output parameter, or an input/output

parameter to one, and only one, operation. For messages, the relationship Includes, and

its inverse, Included By, allows a message to be given zero or more units of data2. A

specific unit of data can be included in at most one message.

The preceding discussion identified three relationships involving the entity Task.

Task is also party to a number of other relationships. For one, a task can send and receive

zero or more messages, while a message must be sent and received by one task only (this

design meta-model requires that broadcast and multicast communications be replaced by

individual message communcations). These facts can be represented with the

relationships Sends (inverse is Sent By) and Receives (inverse is Received By). A task

may also accept events of any allowed type (that is, timer expiration, interrupt, or

software signal) and may generate software signal events. These capabilities can be

shown using the Accepts (inverse is Accepted By) and Generates (inverse is Generated

By) relationships. Accepting a timer expiration event places is assumed to place a task in

a state where it is ready to execute. Accepting an interrupt event is assumed to vector the

execution of a task to a specific location within the task logic. Accepting a software

signal event is assumed to require a task to be waiting for the event, as one among

possibly other events and messages, to arrive.

2 A message without data consists solely of a message type (or name). A message
without data can be used to simulate an internal software event.

133

A task may accept data from or send data to the external environment. These

situations can be represented via the Reads (inverse is Read By) and Writes (inverse is

Written By) relationships, respectively.

The remaining relationships involving the entity Task deal with message queues.

A task that receives queued messages can own zero or one priority queue (shown through

the relationship Owns), and a priority queue can be owned by at most one task

(represented with the inverse of Owns, Owned By). A task that receives queued

messages can also consume the contents of zero or more FIFO message queues (depicted

using the relationship Consumes), while any message queue must be consumed by a

single task (indicated using Consumed By, the inverse relationship of Consumes).

When a priority queue exists it is modeled as a parallel set of FIFO queues for

which the priority queue is said to provide a head (the relationship Heads). Each FIFO

queue can be a component of at most one priority queue (denoted with the inverse of

Heads, Headed By). A message queue can also hold queued messages from more than

one source, where each message held has the same value for its priority attribute as the

value for the priority attribute of the message queue that holds the message. These

connections can be represented using the Holds relationship, and its inverse, Held By.

When the target environment for the system being designed does not provide

message queues, an intermediary task can be constructed to decouple message

communications that would normally be sent via message queues. In such cases, two

relationships provide alternatives to Owns and Consumes. The relationships Encloses

134

and Encapsulates, and their inverses Enclosed By and Encapsulated By, allow a priority

queue or FIFO queue, respectively, to be hidden inside an intermediary task.

Communication between two decoupled tasks occurs through the intermediary task.

Communications with the intermediary task occur through synchronized message

exchange using tightly-coupled messages. In such circumstances, the messages sent

between the decoupled tasks are carried within tightly-coupled messages exchanged with

the intermediary task. The relationship Carries (and its inverse, Carried By) can be used

to show that a Queued Message is transferred within a Tightly-Coupled Message.

Both tightly-coupled and queued messages can be answered with a

tightly-coupled message. Should the sender of a tightly-coupled message require a reply

from the receiver before additional processing can occur, the message sender will wait for

a message to be returned from the receiver before continuing. Similarly, should the

sender of a queued message need a reply from the receiver before continuing, then the

sender waits until the receiving task provides the necessary reply. The relationship

Answers (and its inverse, Answered By) allows a request message to be linked to a

tightly-coupled message that serves as a corresponding reply.

5.2.3 Assumptions Underlying the Design Meta-Model

Specific real-time operating systems, run-time environments, and programming

languages define the semantics for exchanging messages and, where applicable, signals

between tasks. In order to apply to a wide range of systems, the design meta-model

defined in this dissertation makes only a weak set of assumptions about the specific

135

semantics associated with message and signal exchanges. Most real-time operating

systems, run-time environments, and programming languages define a more detailed set

of semantics. Designs described using the design meta-model can be elaborated using the

semantics of any specific operating system, run-time environment, or programming

language that does not violate the weaker assumptions of the design meta-model. The

relevant assumptions are given below.

The sender of a tightly-coupled message cannot proceed until the receiver of the

message accepts the message.

The sender of a queued message will block when sending to a full queue. The

receiver of a queued message will block when receiving from an empty queue.

Messages are read from a queue in first-in, first-out order. If the queue is a priority

queue, then messages are read highest priority first, but in first-in, first-out order

within each priority.

Tasks request their own suspension when awaiting a timer expiration event. When

a timer expiration event occurs, the suspended task commences execution from the

statement following the suspension request.

Tasks provide labeled entry points for execution upon the receipt of interrupt or

software-signal events.

A task can selectively await the arrival of one or more messages, either queued

messages, tightly-coupled messages, or both. Arrival of any one of the awaited

messages allows the waiting task to continue.

136

5.3 Describing Target Environments

The research described in this dissertation models target environment

descriptions, or TEDs, as: 1) a set of constraints imposed by the intended hardware

architecture and operating system that will host a concurrent design and 2) a set of

guidelines used to make some design decisions. At appropriate times in the design

process these constraints and guidelines are consulted by design-decision rules in order to

make sensible decisions. Table 4 presents the hardware and operating system imposed

constraints that are included with the TED model. Table 5 gives the design guidelines

that can be represented with the model.

Two constraints relate to the ability of target hardware and operating systems to

provide access to memory shared between tasks. The constraint called intra-processor

shared memory denotes the availability or unavailability of shared memory for tasks

that execute on the same processor. If intra-processor shared-memory mechanisms

are not provided in a target system, then, since message communications among tasks is

assumed to exist, the designer can place IHMs accessed by multiple tasks on the same

processor into server tasks. The constraint called inter-processor shared memory denotes

the availability or unavailability of shared memory for tasks that execute on separate

processors. If inter-processor shared-memory mechanisms are not available in the target

environment, then the designer must place IHMs accessed by tasks executing on separate

processors inside a server task in the local memory of one of the processors. If

inter-processor shared-memory mechanisms are available, then the designer can place

137

Table 4. Target Environment Constraints

Constraint Representation Possible Values

intra-processor shared
 memory1

SYMBOL Available (default) or
Unavailable

inter-processor shared
 memory1

SYMBOL Available or
Unavailable (default)

maximum number of
 inter-task signals

NATURAL NUMBER Default is 2

message queues SYMBOL Available (default) or
Unavailable

priority queues SYMBOL Available or
Unavailable (default)

number of processors1 NATURAL NUMBER Default is 1

number of task priorities1 NATURAL NUMBER Default is 64

Table 5. Design Guidelines

Guideline Representation Possible Values

task-inversion threshold NATURAL NUMBER Default is 4

priority-assignment
 algorithm1

SYMBOL Manual or
Algorithm Name

task-allocation
 algorithm1

SYMBOL Manual or
Algorithm Name

1 These constraints and guidelines are not used by any design-decision rules
specified in this dissertation. They are included to support future research regarding the
automated configuration of designs for a variety of hardware architectures.

138

IHMs accessed by tasks executing on separate processors into a shared-memory area

accessible by multiple processors.

Another constraint defines the maximum number of inter-task signals supported

by the target operating system. This constraint can be used by a designer to decide

whether events between two tasks can be allocated to software interrupts, or whether

inter-task messages must be used to transport the events.

Two additional constraints denote the availability or unavailability of various

queuing facilities in the target operating system. The constraint called message queues

indicates whether or not the target operating system allows tasks to consume first-in,

first-out (FIFO) queues of incoming messages. The constraint called priority queues

indicates whether or not the target operating system allows tasks to consume queues of

incoming messages where the queue contents are segregated based on priority. Using

these two constraints, a designer can decide what type of interface should be provided to

tasks that require queues of messages. A designer might choose one of the following task

interfaces: 1) a single FIFO queue, 2) a priority queue, 3) multiple FIFO queues

simulating a priority queue, 4) a queue-control task simulating a FIFO queue, or 5) a

queue-control task simulating a priority queue.

The two remaining constraints define the number of processors available in the

target environment and the number of task priorities that can be supported for each

processor. This information can be used in making design decisions regarding the

assignment of tasks to processors and the assignment of priorities to tasks on the same

139

processor. In fact, the values held be these constraints might be used in conjunction with

two of the three guidelines shown in Table 5.

The task-allocation algorithm guideline indicates whether tasks are to be allocated

to processors manually or by using an automated algorithm. When an automated

algorithm is available, the guideline names the algorithm. Similarly, the

priority-allocation algorithm guideline indicates whether task priorities are to be assigned

manually or by using an automated algorithm. The final guideline, task-inversion

threshold, indicates when multiple instances of the same task should be merged into a

single task that switches internally among the various instances of the task.

140

