
Chapter 4  A Meta-Model for Specifications

The previous chapter proposed an architecture for automating the generation of

concurrent designs for real-time software.  The proposed architecture identified three

meta-models for design information:  a meta-model for specifications, a meta-model for

concurrent designs, and a meta-model for target environment descriptions.  This chapter

describes in detail the specification meta-model.

To provide an initial structuring for real-time problems, analysts often build a

behavioral model based upon data/control flow diagrams, augmented with state-transition

diagrams (sometimes referred to as finite automata or finite-state machines).  One widely

used method to create and describe such a behavioral model is known as Real-Time

Structured Analysis, or RTSA.  When applied to a real-time problem, RTSA produces a

set of hierarchical data/control flow diagrams, with supporting state-transition diagrams

to depict the operations within control transformations, with pseudo-code specifications

to outline the operations within data transformations, and with a data dictionary to detail

the data flows represented in the flow diagrams.    

After creating such a behavioral model, designers then consider how to map

elements from the data/control flow diagrams onto a structure that can lead to an effective

and efficient software implementation.  Sometimes a designer intends to produce a



sequential design, at other times a concurrent design.  The research described in this

dissertation, assumes that the designer requires a concurrent design, that is, a design

composed of tasks and modules. 

In order to automate the reasoning used by designers to transform data/control

flow diagrams into concurrent designs, the knowledge available to designers must be

represented in a machine-processible form.  A substantial component of the needed

knowledge involves representing and reasoning about specifications represented as flow

diagrams.  Subsequent sections of the current chapter define this knowledge as a semantic

meta-model for specifications, based on RTSA data/control flow diagrams and other

supporting information.  While real-time problems can be modeled with RTSA notation,

RTSA specifications can be modeled with the specification meta-model defined in this

chapter.  The specification meta-model defines each element that composes a RTSA

specification as a semantic concept and also places those concepts in semantic relation to

one another; thus, the specification meta-model can be called a semantic meta-model.

Using the semantic meta-model, as defined below, RTSA specifications can be

represented and reasoned about.  One form of reasoning supported by the meta-model

enables a RTSA specification to be examined for the presence of semantic concepts.  This

form of reasoning allows the data and control transformations, the terminators, and the

data and event flows in a RTSA data/control flow diagram to be classified more

specifically as semantic concepts from the meta-model.  For example, a data

transformation on the edge of a data/control flow diagram might be classified as an
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Asynchronous Device Input Object.  The most specific concepts in the semantic

meta-model, called leaf concepts, appear as leaf nodes in a concept hierarchy.  A second

form of reasoning supported by the semantic meta-model determines whether or not a

RTSA specification consists entirely of leaf concepts.  For example, a data transformation

classified as an Asynchronous Device Input Object, having no subordinate concepts in

the semantic meta-model, would be recognized as a leaf concept, while a data

transformation classified as an Asynchronous Device Interface Object, having several

subordinate concepts in the semantic meta-model, would be recognized as a non-leaf

concept.  A third form of reasoning facilitated by the semantic meta-model allows any

component in a RTSA specification, after having been classified as a concept in the

semantic meta-model, to be evaluated against a concept definition to determine whether

or not the component represents a valid instance of the concept.  For example, if the

semantic meta-model requires an Asynchronous Device Interface Object to be the

recipient of an interrupt from a device, then any component of a RTSA specification that

depicts a valid instance of the concept Asynchronous Device Interface Object must meet

this requirement.

4.1  The Concept Hierarchy

Real-Time Structured Analysis, or RTSA, provides a small number of symbols,

shown in Figure 5, for documenting data/control flow diagrams.1  While flexible and

useful for expressing the relationships between data flows and the processes that

1 The semantic meta-model defined in this dissertation omits the RTSA symbol for
continuous data flow.  Continuous data flows do not play a large part in the specification
of real-time systems for digital computers.
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transform data, and the relationships between event flows and control processes and the

processes that they control, the symbols alone do not provide the richness of semantic

content needed to reason about the generation of concurrent designs.  For this reason,

Gomaa, in his Concurrent Object-Based Real-time Analysis method, or COBRA, restricts

the combinations of RTSA symbols used to model real-time problems, and then attributes

semantic significance to the allowed combinations.  The semantic meta-model for

specifications, as defined in this chapter, begins with the ideas proposed in COBRA, and

then provides a sufficiently rigorous definition of the allowed semantic concepts so that

they might serve as a basis for automating the analysis of data/control flow diagrams and

the generation of concurrent designs. 

A major aspect of the specification meta-model includes a concept hierarchy,

where each child concept specializes, using an is-a relationship, its parent concept.  A

relatively simple notation represents the concept hierarchy.  A circle denotes each

semantic concept within the hierarchy.  A directed arc, drawn from a child concept to the

parent concept(s), represents each is-a relationship.2  Being rather complex, the complete

concept hierarchy requires several, separate diagrams.    Whenever a concept appears on a

diagram as two concentric circles then another diagram exists that continues the hierarchy

from that concept.  

2 The circles and arcs in the specification meta-model represent semantic concepts
and inheritance, respectively.  The reader should take care not to confuse the notation
used to describe the specification meta-model with the notation used by RTSA to
represent data/control flow diagrams.  The two notations are unrelated.
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The definition of the semantic meta-model for specifications begins with a

first-level division of concepts into Specification Element and Specification Addenda, as

shown in Figure 6.  Specializations of the concept Specification Element represent

components of data/control flow diagrams, while specializations of the concept

Specification Addenda represent additional information that, while not depicted on

data/control flow diagrams, is needed to make design decisions.  Each of these first-level

divisions is described further below.

4.1.1  Specification Elements

The concept Specification Element generalizes the concepts that compose

data/control flow diagrams.  Specializations of the concept Specification Element lead,

through some intermediate concepts, first to the syntactic elements of a RTSA
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data/control flow diagram, and then, with increasing specialization, to the leaf concepts of

the semantic meta-model.  This classification scheme allows the presence of semantic

concepts in a given input specification to be inferred from the syntactic elements of

RTSA data/control flow diagrams.

4.1.1.1  RTSA Syntactic Element Classification

Figure 7 depicts the specialization of Specification Element to the point where

RTSA syntactic elements (refer back to Figure 5) can be denoted.  The first specialization

of Specification Element defines Node, Directed Arc, and Two-Way Arc.  These abstract

concepts cannot be represented directly within an input specification, but must be

inherited by more specialized concepts.  Informal definitions for each of these abstract

concepts follow.  

The concept Node is defined to be a point within a grid.  A Node must be named,

and every Node within a given grid must have a unique name.  No Node can be named

"System", as this name is reserved as a source for timer event flows.  A Node is also

repeatable; so, any given, uniquely-named Node in a grid can have more than one

instance.

The abstract concept Directed Arc is defined to be a directed link between two

Nodes in a grid.  Each Directed Arc denotes a link from one Node (called the source) to a

second Node (called the sink) in a grid.  A Directed Arc can be labeled with a name.  No

Directed Arc can have the same Node as both the source and the sink.  The abstract

concept Two-Way Arc is defined to be a directionless link between two Nodes in a grid.
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Each Two-Way Arc denotes a link between one Node (called the right) and a second

Node (called the left) in a grid.  A Two-Way Arc can be labeled with a name.  No

Two-Way Arc can have the same Node as both the left and the right.

The semantic meta-model provides three specializations of the concept Node, as

shown in Figure 7.  The concepts Terminator and Data Store can be used to represent, in

an input specification, the RTSA syntactic elements of the same name.  The abstract

concept Transformation (sometimes referred to, for brevity, as Transform) further

specializes the concept Node, but cannot be represented directly in an input specification.

The concept Transformation is a Node that can be numbered.  Transformation numbers

can take a hierarchical form, where each Transformation number is represented as a series

of one or more natural numbers.  When a Transformation number contains more than one

natural number, each natural number is separated from the one following it by a period.

For example, valid Transformation numbers include: "1.0", "1.1.2.3", "1", "7.2.3", and so

on.  Within a set of Transformations in the same input specification no two

Transformation numbers can be identical.

The abstract concept Transformation is specialized into two concepts that can be

represented directly using RTSA syntactic elements.  The concept Solid Transformation

represents the RTSA syntactic element called Data Transformation, while the concept

Dashed Transformation represents the RTSA syntactic element called Control

Transformation.
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The semantic meta-model provides two specializations of the concept Directed

Arc, as illustrated in Figure 7.  The concepts Solid Directed Arc and Dashed Directed Arc

represent the RTSA syntactic elements called Data Flow and Event Flow, respectively.

The semantic meta-model includes only one specialization of the concept Two-Way Arc.

This specialization, shown as Solid Two-Way Arc in Figure 7, represents the RTSA

syntactic element called Two-Way Data Flow.

Using the concept hierarchy for Specification Element, as explained to this point,

RTSA data/control flow diagrams can be represented.  Further specialization of the

concept hierarchy allows additional semantic concepts to be identified and denoted.

4.1.1.2  Semantic Element Classification

COBRA, restricts the combinations of RTSA symbols used to model real-time

problems, and then attributes semantic significance to the allowed combinations.  In the

manner suggested by COBRA, the semantic meta-model further classifies the syntactic

elements of RTSA in order to enable additional semantic concepts to be recognized and

represented.

4.1.1.2.1  Terminators

The specification meta-model allows three types of Terminator to be

distinguished, as shown in Figure 8.  The concept Device is a Terminator that

corresponds to hardware in the problem domain.  The concept External Subsystem is a

Terminator that denotes an external, independent, subsystem that communicates with the

subsystem represented by a given input specification.  The concept User Role is a
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Terminator that represents a human operator who interacts with the system using a dialog

of commands and responses.  These three concepts, Device, External Subsystem, and

User Role, appear as leaf concepts in the semantic meta-model.

4.1.1.2.2  Solid Transformations

As shown in Figure 9, the semantic meta-model distinguishes among a variety of

uses for the concept Solid Transformation.  Fundamentally, two types of Solid

Transformations are distinguished.  The concept Interface Object denotes a Solid

Transformation that exchanges events or data with a Terminator.  The concept Function

denotes a Solid Transformation that does not exchange events or data with a Terminator.

Each Interface Object can exchange data with only one Terminator.  The concept

Interface Object can be further specialized through the concepts User-Role Interface

Object (an Interface Object that exchanges data with a User-Role), Subsystem Interface
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Object (an Interface Object that exchanges data with an External Subsystem), and Device

Interface Object (an Interface Object that exchanges data with a Device).  The concepts

User-Role Interface Object and Subsystem Interface Object appear as leaf concepts in the

semantic meta-model; however, as shown in Figure 9, the concepts Device Interface

Object and Function can be further specialized.

4.1.1.2.3  Device Interface Objects

The semantic meta-model enables Device Interface Objects to be specialized

based on the characteristics, or requirements, of the device for which they provide an

interface.  In fact, the various specializations of Device Interface Object included in the

specification meta-model provide a rich set of concepts, as shown in Figure 10.  Device
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Interface Objects can be classified based on the type of data exchange with a Device.  A

Device Interface Object that only receives data from an associated Device can be

specialized as a Device Input Object.  A Device Interface Object that only sends data to

an associated Device can be specialized as a Device Output Object.  A Device I/O Object

both receives data from and sends data to an associated Device.

Device Interface Objects can also be classified based on the impetus for data

exchanges with an associated Device.  A Device Interface Object that must periodically

tend to an associated Device can be specialized as a Periodic Device Interface Object.  A

Device Interface Object that waits for an associated Device to request attention can be

specialized as an Asynchronous Device Interface Object.  A Device Interface Object that

tends to an associated Device only when requested to do so by a Function can be

specialized as a Passive Device Interface Object.

The specializations of Device Interface Object based on the direction of data

exchange and on the impetus for data exchange can be combined, using multiple

inheritance, to form nine varieties of Device Interface Object, as shown in Figure 10.

These nine concepts appear as leaf concepts within the semantic meta-model for

specifications.

4.1.1.2.4  Control Objects

Before completing the discussion of the Solid Transformation classification

hierarchy by defining the specializations of Function, the concept Control Object must be

introduced, followed by the specializations of Solid Directed Arc and Dashed Directed
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Arc.  A Control Object, the sole specialization of Dashed Transformation supported

currently by the semantic meta-model, denotes a Transformation that contains a related

state-transition diagram.  Only Dashed Directed Arcs may enter or leave a Control

Object.  Each incoming Dashed Directed Arc represents an event that the state-transition

diagram should recognize, while each outgoing Directed Arc represents some control

action, initiated by a transition contained within the state-transition diagram.  For

completeness, Figure 11 shows the specialization of a Dashed Transformation as a

Control Object.  Control Object appears as a leaf concept in the semantic meta-model.

4.1.1.2.5  Solid Directed Arcs

The semantic meta-model allows the concept Solid Directed Arc to be specialized

for three separate uses, as shown in Figure 12.  One specialization, Internal Data Flow,

denotes the flow of data between Solid Transformations.  A second specialization,

External Data Flow, denotes the exchange of data between an Interface Object and a

Terminator.  The third specialization, Data-Store Data Flow, represents data exchange

between a Solid Transformation and a Data Store. 

Further specializations of the concept Internal Data Flow include Stimulus and

Response.  The concept Stimulus represents most data that flows between Solid

Transformations.  The concept Response denotes the special case where data is sent from

one Solid Transformation, say A, to another Solid Transform, say B, in reply to a

Stimulus that was received by A from B.
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Further specializations of the concept External Data Flow include Input and

Output.  The concept Input denotes data that flows from a Terminator to an Interface

Object.  The concept Input includes an attribute, maximum-rate, that can contain the

maximum number of inputs per second generated by an associated Terminator.  The

concept Output denotes data that flows from an Interface Object to a Terminator.

Further specializations of the concept Data-Store Data Flow include Store and

Retrieve.  The concept Store denotes data that flows from a Solid Transform to a Data

Store, while the concept Retrieve denotes data that flows from a Data Store to a Solid

Transform.  Stimulus, Response, Input, Output, Store, and Retrieve appear as leaf

concepts within the semantic meta-model.

 4.1.1.2.6  Dashed Directed Arcs

The semantic meta-model specializes the concept Dashed Directed Arc as the

concept Event Flow.  This specialization, while not strictly required, allows the

meta-model to be expanded should additional uses be found for the Dashed Directed Arc.

The concept Event Flow can be specialized, as shown in Figure 13, into two abstract

concepts: Normally-Named Event Flow and Specially-Named Event Flow.  The abstract

concept Specially-Named Event Flow denotes an event flow that is labeled with a name

from among a set of reserved event-flow names.  At the present time, the set of reserved

event-flow names includes:  Disable, Enable, and Trigger.  The abstract concept

Normally-Named Event Flow denotes an event flow that is labeled with a name that is

not among the set of reserved event-flow names. 
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The abstract concept Specially-Named Event Flow can be specialized as a Control

Event Flow.  The concept Control Event Flow denotes a Specially-Named Event Flow

that originates from a Control Object (the source) and flows to a Solid Transformation

(the sink).  A Control Event Flow must be labeled from a partition of the names reserved

for a Specially-Named Event Flow.  At the present time, the valid partition includes the

entire set of reserved event flow names (that is, Disable, Enable, and Trigger).

The concept Control Event Flow can be further specialized into three concepts:

Trigger, Enable, or Disable.  The label of each of these must correspond to the concept

name;  for example, any instance of the concept Trigger is labeled with the name Trigger.

Whenever a Trigger flows between a Control Object and a Solid Transformation, then no

other Control Event Flow may flow between the same Control Object and Solid

Transformation.  Whenever an Enable flows between a Control Object and a Solid

Transformation, then a Disable must also flow between the same Control Object and

Solid Transformation; however, no other Control Event Flow may flow between the same

Control Object and Solid Transformation.  Disable, Enable, and Trigger appear as leaf

concepts in the semantic meta-model.

The abstract concept Normally-Named Event Flow can be specialized as a Timer,

an Interrupt, or a Signal.  The concept Timer denotes a signal that is received periodically

from the underlying operating system or hardware clock.  The concept Timer includes an

attribute, period, that denotes the frequency in seconds with which a specific instantiation
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of Timer will be generated.  The value contained by the attribute period must exceed

zero.  The source of any Timer must be "System".

The concept Interrupt denotes a signal that is received by an Asynchronous

Device Interface Object from a Device.  The concept Interrupt includes an attribute,

maximum-rate, that can contain the maximum number of interrupts per second generated

by an associated Device.  The attribute maximum-rate is used only in situations where a

Device generates interrupts without any associated data (i.e., Input).  In other cases, the

maximum-rate for the input data suffices.

The concept Signal denotes an event sent between two Transformations within a

data/control flow diagram.  No data is associated with a Signal.  Timer, Interrupt, and

Signal appear as leaf concepts in the semantic meta-model.

4.1.1.2.7  Functions

The Function classification hierarchy is shown in Figure 14.  The concept

Function can be specialized into two concepts.  Definitions for these concepts are given

below.  The concept State-Independent Function denotes a Function that is not the sink

for a Control Event Flow.  The concept State-Dependent Function denotes a Function that

is the sink for a Control Event Flow.

The concept State-Independent Function can be further classified as a Periodic

Function or an Aperiodic Function.  The concept Periodic Function represents a

State-Independent Function that is invoked periodically.  A Periodic Function must be the

sink for one, and only one, Timer.  The concept of Aperiodic Function denotes a
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Figure 14.  The Function Classification Hierarchy



State-Independent Function that is invoked on demand.  An Aperiodic Function cannot be

the sink for a Timer.  The concept Aperiodic Function can be further specialized as either

an Asynchronous Function or a Synchronous Function.  The concept Synchronous

Function denotes a function that does not operate independently, but instead operates

synchronously with some other function because either: 1) the other function must wait

for the results of the Synchronous Function before continuing or 2) the Synchronous

Function performs its processing so quickly that no advantage is gained from letting the

function operate independently.  The concept Asynchronous Function denotes a function

that operates independently.  The concepts Periodic Function, Synchronous Function, and

Asynchronous Function appear as leaf concepts in the semantic meta-model.

The concept State-Dependent Function can be further classified as a Triggered

Function or an Enabled Function.  The concept Triggered Function denotes a function

that is the sink for a Trigger or for one or more Signals that originate from a Control

Object.  The concept Enabled Function denotes a function that is the sink for an Enable

from a Control Object.

The concept Triggered Periodic Function denotes a function that, once triggered

by a Control Object, executes periodically until finished.  A Triggered Periodic Function

must be the sink for one, and only one, Timer.  The concept Triggered Synchronous

Function denotes a function that completes execution during the state-transition within

which the function was triggered by a Control Object.  The concept Triggered

Asynchronous Function denotes a function whose completion is independent of the
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state-transition within which the function was triggered by a Control Object.  A Triggered

Asynchronous Function executes until it completes.

The concept Enabled Periodic Function denotes a function that, once enabled by a

Control Object, executes periodically until disabled by a Control Object.  An Enabled

Periodic Function must be the sink for one, and only one, Timer.  The concept Enabled

Asynchronous Function denotes a function that, once enabled by a Control Object,

executes independently, until disabled by the enabling Control Object.  The concepts

Triggered Periodic Function, Triggered Synchronous Function, Triggered Asynchronous

Function, Enabled Periodic Function, and Enabled Asynchronous Function appear as leaf

concepts within the semantic meta-model.

4.1.1.2.8  Solid Two-Way Arcs

The Solid Two-Way Arc classification hierarchy, shown in Figure 15, completes

the specialization of Specification Element.  The sole specialization of the concept Solid

Two-Way Arc is Update.  The concept Update denotes a bi-directional link where a Solid

Transformation is on the left and a Data Store on the right of the link.  The semantic

sense of Update is that some information flows from the Data Store to the Solid

Transformation and then flows back again in an altered form.

4.1.2  Specification Addenda

The concept Specification Addenda denotes information needed to make design

decisions, but information that cannot be represented as a Specification Element.  Figure
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16 shows the Specification Addenda classification hierarchy defined for the semantic

meta-model.  Three types of Specification Addenda are defined.

4.1.2.1  Aggregation Groups

The concept Aggregation Group is used to indicate objects in a data/control flow

diagram that, taken together, compose a larger physical or logical object within an

application.   This concept allows such relationships, not available within the notation for

RTSA data/control diagrams, to be represented.  Each Aggregation Group, as defined in

the context of this dissertation, can consist of a Control Object and a list of the devices

controlled by that Control Object.  No transformation from a data/control flow diagram

may be a member of more than one Aggregation Group.  Each member of an Aggregation
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Group must correspond to the name of a Control Object or Device that exists within the

data/control flow diagram to which the Specification Addenda apply.  For example, an

elevator control application might include an aggregate object, denoting a physical

elevator, that is composed of a Control Object, Elevator Controller, and several Devices:

Elevator Motor, Elevator Door, Floor Arrival Sensors, Elevator Lamps, and Elevator

Buttons.

4.1.2.2  Exclusion Groups

The concept Exclusion Group relates transformations on a data/control flow

diagram, where transformations within the same Exclusion Group cannot execute at the
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same time.  This Specification Addenda allows information regarding mutual exclusion

to be represented.  Such information, helpful when making certain design decisions,

cannot be depicted with RTSA data/control flow diagrams.  Two forms of Exclusion

Group are supported.  One form can relate an instance of Control Object to instances of

Enabled Function that cannot execute concurrently because of ordering restrictions

imposed by the Control Object.  For example, an automobile cruise control system might

operate in any one of three modes, increasing speed (represented by an Enabled Function,

Increase Speed), maintaining speed (represented by an Enabled Function, Maintain

Speed), or resuming cruise speed (represented by an Enabled Function, Resume

Cruising), at any given time, but might also be prevented by control logic (represented as

a Control Object, Cruise Controller) from operating in any two modes simultaneously.

The second form of Exclusion Group can relate instances of periodic and asynchronous

functions that cannot execute concurrently because of ordering restrictions inherent in the

application.  For example, a stop-and-wait protocol, where only one message can be in

transmission at any point in time, might consist of an asynchronous function, Send Next

Message, and a periodic function, Resend Old Message.  After understanding the

description of the stop-and-wait protocol, a designer might conclude that the two

transformations, Send Next Message and Resend Old Message, cannot both be active

simultaneously.

For each instance of Exclusion Group that refers to a Control Object, the Control

Object must exist within the specification and the Exclusion Group must include at least
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two instances of Enabled Function that receive an Enable from the Control Object.  For

Exclusion Groups that do not include a Control Object, each Exclusion Group must

include at least two members.  Only periodic and asynchronous functions can be included

in Exclusion Groups without a Control Object.  No function can be included in more than

one Exclusion Group

4.1.2.3  Locked-State Events

The concept Locked-State Events relates an instance of Control Object to a list of

special instances of Signal received by the Control Object.  For every state within a given

Control Object such that the Control Object is locked in that state until a Signal is

received from one, and only one, specific Transformation, and provided that a Signal

received from that specific Transformation arrives only while the Control Object is

locked in a state awaiting that Signal, then the Signal can be included in the list of

Locked-State Events for that Control Object.  For example, consider a robot control

application in which a Control Object, Robot Command Controller, signals a

Transformation, Program Interpreter, to end the current program, and then waits until

receiving a signal that the current program has ended before continuing.  If the Program

Interpreter only signals that the current program has ended when the Robot Command

Controller is waiting for such a signal, then the signal that the current program has ended

can be placed in the list of Locked-State Events for the Robot Command Controller.

Each instance of Locked-State Events must refer to a Control Object that exists within the
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specification.  No more than one instance of Locked-State Events can exist for any

Control Object within a specification.

4.2  Concept Axioms and Inheritance

The foregoing definitions for the semantic concepts, composing the specification

meta-model, were given in an informal manner in order to provide the reader with an

intuitive understanding.  More formal definitions are needed to facilitate automated

support:  1) for verifying assertions that instances of a concept are indeed valid instances

of the concept and 2) for evaluating whether or not a concept is a leaf concept in the

specification meta-model.  The meta-model addresses these requirements by providing

axioms for each semantic concept within the concept hierarchy, and by allowing axioms

from more general concepts to be inherited by more specialized concepts.  This section

explains the main principles of concept axioms and inheritance.  Appendix A.1 gives a

full specification of the axioms applicable for each semantic concept.

Each semantic concept within the specification meta-model can be circumscribed

by a set of zero or more axioms.  Each axiom consists of an axiom name and an axiom

body.  For example, consider the following axiom that applies to any instance of the

concept Periodic Device Interface Object.

Axiom: One, And Only One, Timer

Let T be the set of all Timers whose sink is the given 
Periodic Device Interface Object.  The cardinality of T 
must be one.
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The axiom name, One, And Only One, Timer, is shown in boldface type and the axiom

body is shown in italics.

Any instance of the concept Periodic Device Interface Object must also meet

another axiom, as follows.

Axiom: No Interrupt

There must not exist an Interrupt whose sink is the given 
Periodic Device Interface Object.

These two axioms, One, And Only One, Timer and No Interrupt, must be satisfied by

any instance of a concept that includes the concept Periodic Device Interface Object in its

path along the concept hierarchy.  Since Periodic Device Interface Object is not a leaf

concept, these axioms would most likely be inherited by any of three child concepts:

Periodic Device Input Object, Periodic Device Output Object, and Periodic Device I/O

Object.  The principles of axiom inheritance can best be illustrated through an example.

Consider the axioms that apply to the leaf concept Periodic Device Input Object,

as shown in Figure 17.  Figure 17 depicts a slice through the concept hierarchy, beginning

with the concept Specification Element and ending with the concept Periodic Device

Input Object.  Each concept is illustrated with a circle.  Concept inheritance is shown, as

before, with a directed arc pointing from a child concept to its parent concept(s).  For

each concept, the names of the associated axioms are shown in a rectangle that is

connected to the concept using a bi-directional arrow.  The definition for each axiom can

be found in Appendix A.1.  Dashed, directed arcs connect the axiom rectangles to
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illustrate that axioms are inherited in accordance with the concept hierarchy.  The concept

Periodic Device Input Object, even though it contains no axioms of its own, must satisfy

the following axioms based on inheritance.

Node: Name Required
Node: Name "System" Reserved
Node: Distinct Name
Transformation: Distinct Number
Transformation:  At Least One Input
Transformation:  At Least One Output
Solid Transformation:  No Redundant Data Flows
Interface Object:  Interface To One, And Only One, Terminator
Device Interface Object:  Requires Input, Output, Or Interrupt
Device Input Object:  Input Only
Periodic Device Interface Object:  One, And Only One, Timer
Periodic Device Interface Object:  No Interrupt

Similar groups of axioms can be composed for any concept in the specification

meta-model.  The group of axioms that apply to a given concept in the semantic

meta-model comprise a formal definition for instances of the given concept.  Any

instance that satisfies the applicable axioms for that concept is a valid instance of the

concept.  Any instance that is asserted to be a specific concept and that then does not

satisfy the applicable axioms for that concept is not a valid instance of the concept.

 4.3  Classification Rules and Concept Classification

A given concept is a leaf concept in the specification meta-model if, and only if,

there exists no other concept that inherits from the given concept.  Each instance of a

non-leaf concept represents a concept that is incompletely classified.  All concepts in a

given specification must be properly classified before a concurrent design can be

generated.  While an analyst or designer could make the necessary decisions, the
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specification meta-model provides a basis for attempting to classify concepts

automatically, using a set of classification rules deployed in an inference network to form

a Concept Classifier.

A Concept Classifier should meet a number of objectives.  First, classification

decisions should be taken automatically, with human input elicited only where no

automatic inference can be drawn.  This requires that as much classification knowledge as

possible be represented within the classification rules.  Second, concept classification

should assume that only the most minimal information might be provided on the input

data/control flow diagrams.  This means that a data/control flow diagram might be

encoded using only the RTSA syntactic concepts (see Figure 5) within the specification

meta-model:  solid and dashed transforms, solid and dashed directed arcs, terminators,

data stores, and solid, two-way arcs.  The Concept Classifier, then, should be capable of

beginning classification from this level of specification.  Third, concept classification

should make no assumption about the actual starting state of classifications within the

input data/control flow diagram.  This means that a particular input data/control flow

diagram might contain concepts that are partially classified.  The Concept Classifier,

then, should be capable of determining which concepts are represented within a

specification instance and should begin the classification from the correct point.  These

three objectives guide the formation of the concept classification rules described below.
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The concept classification rules for the specification meta-model are defined using

a form of if-then rule commonly employed in rule-based expert systems.  The general

form for a classification rule is as follows.

Rule: Classify A Concept

if
a non-leaf concept is recognized and
that concept satisfies the requirements of a more specific concept

then
reclassify the concept as the more specific concept

fi

Here the rule name, Classify A Concept, is shown in underlined text, followed by the

definition of the rule itself: if antecedent then consequent fi.  A specific example of a

classification rule to infer that an Interface Object is a Device Interface Object appears

below.

Rule:  Classify Device Interface Object

if
the concept is an Interface Object and
(the concept is the sink of an Input whose source is a Device or
 the concept is the source of an Output whose sink is a Device or
 the concept is the sink of an Interrupt whose source is a Device)

then
classify the concept as a Device Interface Object

fi

To meet the classification objectives outlined earlier, at least one classification rule is

needed for each inheritance arc within the concept hierarchy.  Appendix A.2 gives the

complete set of classification rules for the specification meta-model.   
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The concept classification rules are organized in a four-stage inference network,

as shown in Figure 18.  Stage one of the network, the Arc Classification stage, attempts to

fully classify all arcs on the input specification, also classifying Terminators and

Transformations to the extent necessary to classify the arcs.  The Arc Classification stage

accepts concepts as minimal as those shown for its input: Terminator, Data Store, Solid

Transform, Solid Directed Arc, Dashed Transform, Solid Two-Way Arc, and Dashed

Directed Arc.  These minimal concepts correspond to the syntactic elements for RTSA

data/control flow diagrams.  Stage one produces sixteen full classifications, as shown in

the figure, two partial classifications (Device Interface Object and Internal Data Flow),

and one non-classification (Solid Transform).  The full classifications are available to

later stages to help in making additional inferences.  The partial classifications and

non-classification can be viewed as direct inputs into stage two.  During the Arc

Classification Stage an analyst is consulted only when Terminator classification decisions

are necessary.  No means exist to infer the classification of terminators.

Stage two of the network, Transformation Classification, attempts to fully classify

all transformations on the input specification.  The Transformation Classification stage

accepts the partial classifications and the non-classification from stage one and produces

thirteen additional full classifications, as listed in the figure, and two partial

classifications (Aperiodic Function and Triggered Function).  The Internal Data Flow

concept passes through the Transformation Classification stage and on to the third stage.
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Stage three, Stimulus-Response Classification, resolves the classification of each

Internal Data Flow on an input specification as either a Stimulus or a Response.  The

Stimulus-Response Classification stage produces only two additional full classifications

(Stimulus and Response).  In cases where the classification rules cannot classify an

Internal Data Flow as a Stimulus or a Response an analyst is asked to make the

classification.  The Stimulus-Response Classification stage also passes the Aperiodic

Function and Triggered Function concepts through to the final stage.

Stage four, Ambiguous-Function Classification, yields the remaining full

classifications: Asynchronous Function, Synchronous Function, Triggered Asynchronous

Function, and Triggered Synchronous Function.  In cases where the classification rules

cannot further classify an Aperiodic Function or Triggered Function without additional

information, an analyst is asked to supply the necessary facts.  For a Triggered Function

the analyst might be asked whether or not the function completes during the triggering

state transition.  For an Aperiodic Function the analyst might be asked whether another

function stops execution until the function completes or, if not, whether the function

executes quickly when called upon.

The Concept Classifier requires a four-stage inference network because

sometimes classification decisions regarding one concept depend on classification

decisions regarding other concepts having been made fully.  For example, classifying the

range of device-interface objects possible within the specification meta-model can depend

on the absence of certain concepts, such as Inputs, Outputs, Timers, and Interrupts.  The
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absence of these concepts cannot be assured until most classification decisions relating to

directed arcs are taken.  In addition, classifying data flows as Stimulus or Response

depends, in some cases, on the existence of specific types of device-interface objects.  In

a like manner, deciding between asynchronous and synchronous functions depends on the

full classification of all data flows.

The classification rules assume that any input data/control flow diagram must

consist of at least the seven concepts, shown in Figure 5, as input to the Arc

Classification stage; however, the input diagram can also consist of any concepts that are

children to the seven minimal concepts, including any leaf concepts.  These facts mean

that: 1) classification rules must exist that begin with each of the seven minimal input

concepts and 2) at least one classification rule must exist for each is-a path along the

concept hierarchy.  For the most part, each is-a path requires a single classification rule.

Two exceptions are notable.  First, since a user classifies each terminator as a Device,

External Subsystem, or User Role, one classification rule can subsume the three

corresponding is-a paths in the semantic meta-model.  A second exception is the is-a path

from Internal Data Flow to Stimulus.  This path requires multiple classification rules

because some special configurations on the data/control flow diagram are used to identify

a Stimulus.

4.4  Information Elicitation

Certain information required to make design decisions might not be represented

directly in an input data/control flow diagram.  For example,  specification addenda,
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including Exclusion Groups, Aggregation Groups, and Locked-State Events, are not

specified on a data/control flow diagram.  In addition, use of the classification rules to

automatically classify components from a data/control flow diagram might lead to the

need for additional information in order to make design decisions.  For example, if a

Dashed Directed Arc becomes classified as a Timer, then a positive period must be

supplied for the Timer.  As another example, if a Solid Directed Arc becomes classified

as an Input, then a maximum rate might be required for the Input.  In general, when this

additional information is needed but not found in the input specification, an analyst or

designer must be consulted.  The elicitation of the necessary information can be

automated to the extent that:  1) the needed information can be identified automatically,

2) an analyst can be prompted for the necessary information, and 3) certain consistency

checks can be performed on the information supplied by the analyst.
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