Appendix C. Robot Controller System Case Study

This appendix describes an application of the proof-of-concept prototype, CODA,
described in Chapter 10, to a robot controller system. The specification for this system
consists of aset of hierarchically arranged data/control flow diagrams, one state-transition
diagram, and a textual description. The specification, taken from Gomaa.! [Gomaag3, Chapter
23], uses RTSA without COBRA restrictions. From this specification, CODA generates,
with the help of an experienced designer, two designs. One design uses the default target
environment description, while the second design uses a target environment description
where no message queuing services are available. This illustrates how multiple designs
can be generated from the same input specification. The case study then shows how a
small change to the specification, a change that aligns the specification more closely with
COBRA redtrictions on the use of RTSA notation, can reduce the number of
consultations that CODA must take with the designer, while still leading to the same
design.

C.1 Robot Controller System, Version 1

Figure 51 shows the context diagram for Gomaa’s robot controller system. Asin
the previous case study, see Appendix B Table 31, the context diagram is annotated with

information inferred or elicited as aresult of applying CODA to analyze the specification.

! Another treatment of the same robot controller problem is given by Nielsen and
Shumate. [Nielsengs]

WRISAS JB||01u0D 1000y JoJ Welfeiq 1¥euo) parklouuy TG a.nbiH

Control Panel

Lights Interrupt

Control Panel
Buttons and

Switch
[Device @]
Panel Control Panel
Input Buttons
[Input =] and
[Mz)r(.slzitif SV[\/I'IE,‘;;;B“?”_L]‘F’I Actuator
p : PU=T settings
[Output =]

Control Panel o [Interrupt =] Perform
Lights [Max. Rate 1000 per sec. *] Robot
I Control
[Device @] Panel Light Signals v\
[Output =] Sensor
Readings
Axis Input Asis [Input =]
[input =] Settings
Axis Motor Interrupt [Max. Rate 100 [out u?:]
[interrupt =] per sec.] j
\
\
[
a
Axis
Motors
[Device @]

Actuators
[Device @]

Sensors
[Device @]

0TS

511

The context diagram differs from Gomaa’s context diagram in only two ways. First,
events arriving from external devices are shown in Figure 51 as dashed, directed arcs.
These events are not shown in Gomaa's context diagram, but can be inferred to exist from
reading the accompanying textual specification. Second, the six axis motors that control
the robot arm are depicted explicitly in Figure 51. Gomaa's context diagram shows a
single axis motor but the accompanying textual specification indicates that six axis
motors exist.

C.1.1 Analyzing the Specification

Once the data/control flow diagram hierarchy is flattened, the entire data/control
flow diagram for the robot controller system consists of twenty-six nodes (18
transformations, 5 terminators, and 3 data stores) and 48 arcs (28 data flows and 20 event
flows). The designer asks CODA to classify concepts on the data/control flow diagram,
to elicit any additiona information required, and to verify that concepts within the
specification satisfy appropriate axioms.

C.1.1.1 Classifying Conceptsin the Specification

Initially, CODA consults with the designer about the nature of the terminators.
After the designer indicates that all terminators in the specification are devices, concept
classification proceeds without further consultation until stage four, where CODA
requires additional information in order to determine a classification for four data
transformations. In one case, CODA needs to know whether atriggered function, Change

Program, completes during the triggering transition. In a second case, CODA asks the

512

designer to confirm, or override, a tentative classification for a transformation, Process
Actuator Command, as a synchronous function. In the remaining two cases, Process
Motion Command and Receive Acknowledgement, CODA requests that the designer
provide information about the time required to execute each transformation. CODA
considers two factors. First, will the time, no matter how brief, required to execute a
transformation unduly delay an invoking transformation? This might occur, for example,
if the invoking transformation receives external events that could be missed while waiting
for the invoked transformation to complete. A second factor, considered only if the first
factor is not an issue, gauges the amount of time needed to complete the algorithm
embodied within atransformation. |f substantial time is needed to execute the algorithm,
then CODA classifies the transformation as an asynchronous function. In the robot
controller case study, the designer indicates that neither of the two transformations,
Process Motion Command and Receive Acknowledgement, unduly delay the invoking
transformation nor require substantial execution time. From these additional facts,
CODA classifies the transformations as synchronous functions.

C.1.1.2 Eliciting Additional Information and Verifying Concepts

Once concept classification is completed, CODA determines that several
additional facts are needed about some of the newly classified concepts. Two timers
require periods and three asynchronous inputs or outputs require maximum rates. CODA
then asks the designer for any specification addenda. In this case study, the designer

specifies no addenda. CODA does not ask the designer about locked-state events because

513

this addendum was included when the input specification was entered with the text editor.
Only one event, Ended, see the state-transition diagram in Figure 54, was specified as a
locked-state event. This addendum was entered ahead of time to show that CODA does
not attempt to elicit information that already exists. The designer finishes adding
information to the specification by changing the cardinality of the Axis Controller from
one to six. Next, the designer asks CODA to verify that all concepts are classified
completely and that al axioms are satisfied. CODA determines that classifications are
complete and that axioms are satisfied.

C.1.1.3 Annctated Data/Control Flow Diagram

The results from analyzing the specification are presented in the form of an
annotated data/control flow diagram, shown in Figures 52 and 53, for the robot controller
system. Figure 52 shows the initial decomposition of the system transformation, Perform
Robot Control, from the context diagram. This decomposition differs from that provided
by Gomaa in only one detail. Gomaa depicts a single transformation, Process
Sensor/Actuator Command, which is shown in Figure 52 as two, distinct transformations,
Process Actuator Command and Process Sensor Command. This decomposition allows
an illustration of the use of labels on data flows to and from data stores. In addition, this
decomposition more accurately reflects the processing described in the textual
specification for the robot controller system.

The classifications assigned and the additional information elicited by CODA are

shown in the annotations for each specification element in Figure 52. Only one

514

[« "s09s 1" pouad]
[= s8wir]

Jawi] Josuas

[= 1dnusju]

1dnuiaiug
Zl ndino] ooy [oassod
= Jnaino, 00T a1y “XEN]
sbumes [= induj]
SV S [E109l30 N\ 4~ nduj sixy
Ol 8dineg
SnouoIyauAsy]
0's
[= sninums] 8jj04uod [= sninuns]
JuaWwabpamouoy Sixy x0lg
SIXY SIXY

[+ uonouny —
SNoUOIYIUAS] Wm\\,m_u MMWM
09 EmEmmU.m_Eo:v_o,q
Juawabpajmoundy SiXy
EINELEN| ’

[= uonoun4
SnouoIyauAsy]
oY
puewwo)
SIXY
EICIENEL)

[= sninwns] . f

o (oo =
— sBuipeay M3a 2ApouSd, onon : -
10SUBS oot .. .
slosuas : . \
uonoun h -
m‘ﬁwca.&uu:\wﬂ : Epuis] - [=mdnol
e : awnsey sfeubis
= s10i5] [= sninwns] pUBWILIOD ! : won
ereq Josuos WaWabpamoudoy ! : |sued
uonow uonow - :
L’ ’ SS9201d L 6 \ .
= jeuis] - :
21015 BIR - .
b MMn_g al _ [=anauey] dois T .
ereq Josuag) [= uopoung N
Joyenioy/losuss SNoUoIYIUAS] ot
o2 [= sninus] puewwod
uBWIWO: A
pUBLIWOD = asuodsay] P UOnON 2 7 [=eubis] 100u
[= onomoy] 10SUBS anjen - . pug ss9001d
ereq Joenpy [= 2101S] S$s8%0.d 10sUBS -
ereq Joreny .
% = sninwins] [= sninuns]
puewwo) puewwo)
. josuag ~__/ snouoyouAsy] \ p’ eiboid Le1s -
[¢ uonouny 0z b\E - [, 085 sad
SNOUOIYOUA: oy Xe
[= indino] [=100lq0 indino o.hm o [= sminus] H%MN%% - ¢ m Muéé
<«— sbumes 8a118@ dipoliad] LRl puBWIWOY —— d o g ndui joue
Joyenoy 06 p! o} JoreNY widiswg /- K nauj |sued
oy / OEMRY N e [=reubis] .-
sloyenioy ssso0ig /K T pepu3
[zeromay] el .
JUETITEENS ’
weiboid
[« "s99s g* pouad] L
[= sowiy] [# 8101s EIEQ]
Jawi] Jorenjoy wreiboid

joqoy

/

[« ~08s 1ad
000T a1y "xen]
[= 1dnusyu]
1dnuayu sybI
|aued |04u0D

[= 1dnusyuj]

1dnusiul youms

pue suonng
|aued [04u0D

AN

Figure 52. Initial Decomposition of the Robot Controller System

515

Change
Program
1.3

[Triggered
Synchronous
Function +]

[Store =]

Program ID
[Data Store #]

-

Start i
. _ . _ 1.4 Start Program Command
[Stimulus =] [Trigger =] [Triggered [Stimulus =] ’ e
C;J:::;:;:::' SIJ:/”Ch’f’”OL}S Control Panel
; unction =, Lights Interrupt
Switch Interr_upt Ended Tr|gger Manual Off, [Interrupt =]
[Interrupt =] Run [Signal =] [Trigger =] Run On Max. Rate 1000
[Signal =] g [Stimulus =] per sec.]
”_,»"'~,\~ End End v
Operator~ i] Program __[Signal =]
Input _Stop Robot Tngger _1.5
Panel [Signal =] Controller [Trigger 3 [Triggered
Synchronous End On
1.1 1.2 onod [Stimulus =] 1.9
[Asynchronous End [Control Function =] d\' [Asynchronous
Device Input [Si _ Object =] [
- ignal =]
Object =,
hR R Trigger Ended
... - [Trigger =] Process Lights
Program Ended [Stimulus =]
Program
Panel
| Select .1'6 :
nput [Signal] [Triggered Panel Light
[Input =] B) Synchronous Signals
[Max. Rate .5 per sec *] [‘l-'l;;gl;‘z;%err—] Function =] v [Output =]
Stop
[Signal =]
Trigger Stop
[Trigger =] Program
1.7
; M | Off,
[Triggered ;ﬂzaOn
Synchronous [Stimulus =] Stop Off,
Function =] B Run On
[Stimulus =]
Resume
Program
1.8 Resume
[Triggered [Signal =]
Synchronous
Function =]

Figure 53. Decomposition of Process Robot Command

516

transformation, Process Robot Command, remains unannotated. Process Robot
Command is further decomposed in Figure 53. This decomposition is identical to that
provided by Gomaa. Each specification element on Figure 53 is annotated. The control
transformation, Robot Controller, encapsul ates a state-transition diagram, Figure 54.

C.1.2 Generating the Design

After analyzing the specification, the designer decides to generate a design. Since
the designer is experienced, CODA can interact with the designer as necessary to request
guidance. The designer chooses first to structure tasks.

C.1.2.1 Structuring Tasks

Whenever a synchronous function within a data/control flow diagram connects
with transformations that have been allocated to separate tasks, CODA cannot determine
whether the synchronous function is more cohesive with some of these transformations
than with others. CODA asks the designer for advice in each such situation; but the
designer is not forced to provide guidance. In case of the robot controller system, CODA
consults the designer regarding the alocation of two data transformations.

One synchronous function, Process Motion Command, connects two
asynchronous functions, Interpret Program Statement and Generate Axis Command. No
clear information exists to alow CODA to decide that Process Motion Command should
be alocated together with either of the connected transformations; thus, CODA seeks
guidance from the designer. The designer, understanding the application-specific

relationships among these transformations, indicates that Process Motion Command

18]1011U0D 1000y Joj Weifelq uonisuel | BrIS G ainbi4

Powered

Powered On

.

Off

Powered Off

Program Select

Trigger Change
Program

Powering
Up
Successful
Power Up
Manual Run Running
Trigger
ry Start
Program
Ended Run Stop
Trigger Trigger Trigger
Process Trigger Resume Stop
Program End Program Program
Ended Program y
Terminating Suspended

L1S

518

should be alocated together with Interpret Program Statement, rather than with Generate
Axis Command. Had the designer not known how to allocate Process Motion Command,
then CODA would generate a separate task for the transformation.

A second case where CODA seeks guidance from the designer involves the
synchronous function named Receive Acknowledgement. This function links three
adjacent transformations, Axis Controller, Generate Axis Command, and Interpret
Program Statement, that are each allocated to a distinct task. In this case, the designer
understands, and indicates, that Receive Acknowledgement should be allocated together
with Generate Axis Command. Absent guidance from the designer, CODA would simply
alocate Recelve Acknowledgement to a separate task. Table 45 gives the results of
CODA's task structuring including: the tasks created, the transformations allocated to
each task, and the criterion used in determining each alocation.

C.1.2.2 Structuring Modules

Next, the designer decides to structure the transformations and data stores into
information hiding modules. Here, the same two synchronous functions, Process Motion
Command and Receive Acknowledgement, which caused CODA to consult with the
designer during task structuring also require consultation during module structuring. The
synchronous functions in question each link two other functions that are already allocated

to two, distinct modules. For each of the functions in question, CODA cannot determine

519

Table 45. Task Structuring Decisions for Robot Controller, Version 1

Task Transformations Structuring Criterion

Axis Manager Generate AxisCommand |Asynchronous Internal Task
Receive Acknowledgement |User-Specified Cohesion
Interpret Program Statement | Asynchronous Internal Task

Interpreter Process Sensor Command | Sequential Cohesion

Process Actuator Command
Process Motion Command

Sequential Cohesion
User-Specified Cohesion

Robot Controller

Control Task

Resume Program Control Cohesion

Stop Program Control Cohesion
Robot Command Processor | Process Program Ended Control Cohesion

End Program Control Cohesion

Start Program Control Cohesion

Change Program Control Cohesion
Process Actuator Output Actuators Periodic Device I1/O Task
Process Sensor Input Sensors Periodic Device /O Task

AXxis Controller

AXxis Controller

Asynchronous Device 1/0O
Task

Control Panel Input Handler

Operator Input Panel

Asynchronous Device I/O
Task

Control Panel Output
Handler

Operator Output Panel

Asynchronous Device I/O
Task

whether to allocate the function to one or the other of the two existing modules or to

create a new module for the function.

CODA consults the experienced designer for

guidance. In this case, the designer indicates that the two transformations in question

should each be allocated to an existing module. The designer allocates Process Motion

520

Command to the same module as Interpret Program Statement and allocates Receive
Acknowledgement to the same module as Generate Axis Command. Had the designer
not provided help, then CODA would have ssmply generated a separate module for each
of the transformations in question. CODA makes the remainder of the module
structuring decisions without consulting the designer. Table 46 reports the results of the
modul e structuring for the robot controller system.

C.1.2.3 Integrating Tasks And Modules

Once both tasks and modules are structured, the designer decides to integrate the
two views. CODA makes these decisions without consulting the designer.

C.1.2.4 Defining Task Interfaces

Only the task interfaces remain to be defined. To complete the design, CODA
alocates the external interfaces and the event flows among the various tasks within the
design. Subsequently, CODA considers the data flows between pairs of tasks. For
severa data flows, CODA cannot reach a definite decision regarding the form of message
passing to use. Since the designer is experienced, CODA seeks guidance. The designer
Is free in each case to decline to assist CODA. Had the designer been inexperienced then
CODA would ssimply make default decisions to map the data flows to queued messages,
as is also the case when an experienced designer declines to provide guidance. The
following paragraphs discuss each case where CODA seeks advice from the designer to

map a data flow to a message.

521

Table 46. Module Structuring Decisions for Robot Controller, Version 1

Module Transformation/Data Store Structuring Criterion
Resume Program State-Dependent, Function
Stop Program Driver Module
Command Handler Process Program Ended
End Program
Start Program
Program ID Program ID Data-Abstraction Module
Change Program Update Operation of DAM
Sensor/Actuator Sensor/Actuator Data Data-Abstraction Module
Database Process Actuator Command |Update Operation of DAM

Process Sensor Command

Operation of DAM

Robot Controller

Robot Controller

State-Transition Module

Actuator Actuators Device-Interface Module
Sensor Sensors Device-Interface Module
AXis AXxis Controller Device-Interface Module

Control Panel Input

Operator Input Panel

Device-Interface Module

Control Panel Output

Operator Output Panel

Device-Interface Module

Axis Manager Generate Axis Command Algorithm-Hiding Module
Receive Acknowledgement Designer Allocated Function
Interpreter Interpret Program Statement | Algorithm-Hiding Module

Process Motion Command

Designer Allocated Function

Robot Program

Robot Program

Data-Abstraction Module

522

The first data flow in question, Axis Block, goes from the Axis Manager to the
Axis Controller. CODA asks the designer whether the sender of an Axis Block must
synchronize with the receiver. The designer indicates that synchronization is necessary.
With this additional information, CODA allocates Axis Block to a tightly-coupled
message. In addition, CODA infers that Axis Acknowledgement, flowing in the reverse
direction between the same pair of tasks, can also be allocated to a tightly-coupled
message. The second set of data flows in question go from the Robot Command
Processor task to the Control Panel Output Handler task. These data flows represent
requests to light and extinguish various lamps on the control panel. In response to
gueries from CODA, the designer indicates that no synchronization is needed between the
sender and receiver for these data flows. With this information, CODA allocates these
data flowsto a queued message.

The two situations described in the previous paragraph, indicate the dilemma
faced by CODA when mapping data flows between tasks. Both the first data flow and
the second set of data flows arrive at a device-output task. In one case synchronization is
necessary, in the other case synchronization is not necessary. Each such decision requires
application-specific knowledge. CODA possesses only general, design knowledge, and,
therefore, must consult an experienced designer in the hope that the designer possesses
the missing, application-specific knowledge. Absent such assistance, CODA maps the

guestionable data flows to queued messages.

523

Two additional variations of this same dilemma occur in the robot controller case
study. The Robot Command Processor task sends a data flow, Start Program Command,
to the Interpreter task. CODA cannot infer the synchronization needs for this data flow.
The designer is consulted, indicating that synchronization is needed. With this
knowledge, CODA allocates the data flow to atightly-coupled message between the two
tasks. In the second instance, the task Interpreter sends a data flow, Motion Block, to the
Axis Manager task. Lacking sufficient knowledge to allocate this data flow to a message,
CODA consults with the designer who indicates that synchronization is not needed.
CODA then allocates the data flow to a queued message between the two tasks. CODA
makes an additional inference that the data flow, Motion Acknowledgements, going in
the reverse direction, can be allocated to the same type of message.

CODA s faced with one additional difficulty. The data/control flow diagram is
constructed in a form such that one transformation, Generate Axis Command, sends a
data flow, Axis Block, to a device object, Control Axis, and that device object sends
another data flow, Axis Acknowledgement, to a different transformation, Receive
Acknowledgement. Logically, one of those data flows, Receive Acknowledgement, is
sent as a response to the other, Axis Block; however, CODA cannot infer that fact
because during classification both data flows appeared to be independent. CODA
assumes, though, that when a device input/output object receives a tightly-coupled
message from a task and also sends a tightly-coupled message to the same task, the sent

message is a reply to the received message. When the designer is not experienced,

524

CODA makes such a decision automatically. When the designer is experienced, CODA
consults with the designer. The experienced designer is free to guide CODA or to decline
to give any guidance. If the designer provides guidance, then CODA acts on it. When
the designer provides no guidance, CODA takes the same, default action used with an
inexperienced designer. In the case study, the designer provides guidance that is
consistent with the default decison and CODA maps the message flowing from the
device input/output task as an answer to the message received by the task.

From this point, CODA finishes the task-interface definition by considering
whether priority messages might be needed and then by allocating queuing mechanisms,
as required, for tasks. The designer is then invited to review the new task-interface
elements and to rename them.

C.1.2.5 The Completed Design

The design generated by CODA, with guidance from an experienced designer, is
shown in Figure 55. Thisdesign isamost identical to the solution given by Gomaain his
case study. The only structural difference appears with regard to module structuring.
Gomaa uses application-specific knowledge to merge two modules, Command Handler
and Program ID, from Figure 55, into a single module. CODA does not contain the
required knowledge, nor does CODA contain a rule for recognizing that an experienced
designer should be consulted on the question of merging these modules. Gomaa's
solution appears superior on this point; however, the solution generated by CODA is also

reasonable. A minor difference appears with regard to the number of operations allocated

525

sinduj sixy

uolresidx3 Jowi L

sBumas sixy
1dnusu| sixy

<
<
sBuipeay Josuas - J19]|01U0D SIXY
Josuas nduj
10SUSS AV Xo0|g
SS9201d SIXY SIXY

1

Josuas Josuas
arepdn peay
I I

Jorenoy Jorenjoy Jebeue
peay ayepdn SIXY
aseqereq Jabeue\ SIXY
Jojen)oy/Iosuss

dois
‘awnsay

101eNIY

sbumas 101enoy

2
I

=/

%)

=

]
indino [Juweiboid 10004 joued
Jo1NY weibold Jsjeidiam) weuboid veis \ 0 e
$S9201d logoy puBWWOD

10SS3201d puewwo) 1000y

u
J910.1dI91U| pu3 anand

1senbay
Joresado

uonesdx3 sawiL

1senbay JojeladQ

Ja|pueH indino
|]aued |onuod

1dnusul Indino
|aued [01u0D

ndino
|oued

ndino
|aued |o1uod

nduj
|aued |01u0D

J9|pueH ndu|
|aued [04U0D

1dnuau) indu
|aued [011U0D

Figure 55. Generated Design for Robot Controller - Default Target Environment

526

to each module. CODA creates a larger number of operations for several of the modules.
This results from the strategy CODA uses to map specification elements to operations. A
human designer is expected to optimize these results, as desired.

C.1.3 A Design for Target Environments without M essage Queues

To demonstrate another of CODA'’s capabilities, the designer decides to reuse a
partially completed design. In this example, the designer reuses the design created
previously from the robot controller specification. At each stage in the design process,
the designer saved the state of the design. Now, in order to move the robot controller
system to a target environment that does not support message queuing, the designer first
copies a partially-completed, old design into a workspace for the new design and then
continues the new design from the preexisting state of the old design. For the current
prototype, the process of renaming and copying old designs is handled outside of CODA
by using file renaming and copying services from the hosting operating system. Prior to
reusing this design, the designer loads a new target environment description, NOQUEUE,
for a system that provides no message queuing services. When the designer next asks
CODA to generate a design, CODA detects that a design aready exists in the workspace,
loads the design, and reports the state of the design to the designer. In this case study, the
old design aready has an integrated task and module structure. This is exactly what the
designer needs because only the task interfaces must be changed to correspond to the new
target environment description. CODA then gives the designer an option to continue the

existing design or to start a new design. In this example, the designer continues the

527

existing design and CODA generates new task interfaces that correspond to requirements
of the new target environment. The completed design, built by reusing much of a
preexisting design, is shown in Figure 56.

The design is identical to that generated previously, see Figure 55, except that
each of the four message queues is now embedded inside a queue-control task. Accessto
these queue-control tasks is made viatightly-coupled messages. A Send message submits
an element to be queued. A Receive Request asks for the next queued message. A
Receive Reply returns the next queued message.

C.2 Robot Controller System, Version 2

The data/control flow diagram for the robot controller system, as provided by
Gomaa, leads to several consultations between CODA and the designer because multiple,
data transformations, Generate Axis Command and Receive Acknowledgement, interact
with the Axis Controller device object. Recall, for example, that CODA consulted with
the designer concerning the allocation of Receive Acknowledgement to a task. Similar
consultation was needed during module structuring. Further, when task interfaces were
defined, CODA consulted the designer about both the type of and the relationship
between a pair of data flows, Axis Block and Axis Acknowledgement, exchanged
between the Axis Manager and Axis Controller tasks. These consultations could be
avoided by modifying the data/control flow diagram dlightly so that a single
transformation subsumes both Generate Axis Command and Receive Acknowledge.

Such modifications bring the data/control flow diagram more closely in alignment with

528

sindu| sixy

uoneldx3 JowiL

sbumas sixy

1dnusul sixy

J8|pueH ndino
|sued |01u0D

1dnuaiu) indino
|sued |01u0D

indino

|aued |03u0D

jsenbay
aneoY

<
<
sbuipeay losuss J3jj011u0D SIXY
J0Sud
S ndu|
Josuas AV 2019
SS320.d anan® SIXY SIXY
oy Uonopw
—— Aiday uonoy puss
Josuss Josuss g]
arepdn peay 1sanbay 0V UoRoN]
I I aNz09Y 5 1abeuey sixy
Joyenioy 10180y 19 Mcms_
pesy arepdn Xy
| Aday 1sanbay
aseqeled o209y BNIB0RY
J01eN1oV/Iosuas
Aday
\sonbay EIEREN]
uonow Qoum
‘awnsay
1ayng
300|g UONOW
sbumas Jorenjoy pepu3z
puss »
Jorenjoy >
(] |
1] PUSS |
o @ al Jiajjonuod
ndino [Jweiboid 10004
we.boid 1e
JoreMoY weiboid saraidianu d uels JoipueH fossasoig
$S320.d 10qoy puBLILIOD puewwo)
joqoy
pug 1sanbay Aday
uonendx3 Jswi| 19121d11U] an@oay anoay
anand
1senbay
Joresado
sisanbay JojesadO puss

sayng
1sanbay Joresado

sisanbay
nding jaued

sayng
ndinQ |aued

nduy
|]aued |01U0D

J9|pueH indu|
|aued |01juod

1dnusiu| Indu)
|aued [01u0D

Message Queues

Figure 56. Generated Design for Robot Controller - Target Environment Provides No

529

the COBRA restrictions on the use of RTSA notation. Figure 57 shows such a
modification to the original data/control flow diagram.

Notice that the data flow Axis Acknowledgement, previousy classified as a
Stimulus, is now classified as a Response. CODA makes this classification without
consulting the designer. Asaresult, CODA later understands, also without consulting the
designer, how to map this interface to a tightly-coupled message with reply. Since the
Receive Acknowledgement transformation is no longer present, CODA does not need to
consult the designer about how to allocate that transformation. A designer used CODA to
generate a design, shown in Figure 58, from the modified data/control flow diagram. The
design is generated for the default target environment. Figure 58 reveals that the design
is identical to that obtained from the original version of the data/control flow diagram.
This comparison demonstrates that certain data/control flow diagrams, those constructed
in accordance with the COBRA restrictions on the use of RTSA notation, can be analyzed
more automatically by CODA than can other diagrams, that is, those constructed using
unrestricted RTSA notation. In general, any synchronous function, where that function
links with two or more transformations, might be allocated to the same task as one or
more connected transformations. CODA cannot determine the best allocation of a
synchronous function among multiple, connected transformations. A designer might be
able to determine the best allocation. For this reason, CODA consults a designer
whenever one of these situations arises. If the designer cannot help, then CODA makes a

default decision. For task allocation, the default decision creates a separate task for the

530

[« "s98s 1" pouad]
[= s8wiy]

Jawi] Josuas

'

[=18lqo nduy

[= nduy]
—sBuipeay 8oinedg %.Motmnt
1osues SI0SUSS

[= a1015]

[= 1dnusju]
1dnusu| 1010 SIXY

Jn ndino] oo% vossed

arey ‘xep]

sbumae:
m_&q s [= 199090 [= nduj]
. ./ oi9dmeg b\ nduy sixy
snouoiysuAsy]
0's [= sninwns]
1sjjonuo) yo0ig

SIXY

[= asuodsay]

JuaWabpajmouydy

SIXY

0
uor

[+ uonoun4

SnouoIyauAs]
0'e

puewwo)

[= sninwns]

[= uonoun4
snouo.ayauAsy]
(0874
sla|jonuo)
SIXY
abeue

olg

on : .

[=reubis] . [=ndino]
R awnsay sjeubis

N Wb
N loued

ereq L«owcww uonow :
S$S9201d .
[= sninwns] [= reubis] -
l# m:wm MEQ _[= anouy] JuBWABPAIMOUNOY dois e
eleq losuag) [= uonoun Uuonon ..
Jloyenoy/iosuss SNOU0IYIUAS] 0T
09 [= sninwns] puewwod
uewIwo) - puewwod R 1000y
P J0suUss = ssuodsay] uonow o Eeubs] mwwnooﬁ
[= anaey] anfeA pu3
ereq Jojenoy [= 9101S] $$8%01d J0SUas L
eleq Jojen)dy - sninums] - \ ;
= ! K = snjnuwy,
H puewwod [= uonouny ucmremm
7 vonouns josuss T m:o:o%w:\@& ”\Eﬂmoi uels S [, -03s iad
L . [«
[= indino] [=108lq0 1ndino m:o:E.co:@ [= sninwns] EoEmuﬁw o wamstm
«— sbumes 891N8 2Ipoliad] 0L puewwo)d weiboid . = Jnaul,
Ioremoy 0'8 PUBWILIOS Iorenoy udiau 7 = jeubis] - induj jued
101eN)OY -) -
Sioremoy $59901d Tteee._. PepUa -

[« "s28s g" pouad]
[= s8wiy]

Jawi] l1oyenpy

[= anaay]
Juswalels
weiboid
[N
[# a.10]s elRQ]
welboid
1ogqoy

[« "08s 18d

000T ey "xep]
[= 1dnusyu]

1dnus sybi
|]aued |0nuU0D

[=1dnusuy]

1dnusul youms

pue suoyng
|aued |0nu0d

AN

Figure 57. A Modified Data/Control Flow Diagram for the Robot Controller

531

nduy sixy
uonesndx3 Jawi|

IndinQO sIxy

<l
<
sBuipeay losuas m SIXY [013U0D
losuss nduj
10suss Aday kanbay
ss9001d SIXY

1

Jjosuas Josuss
arepdn peay
[[wyiboly
107eNY 107BN1OY SHV S19]|03U0D
peay arepdn ooig sixy obeuep
Uonon

L]

aseqereq
10}eN1OY/I0SUSS

S19]|03U0D
sixy abeue

dois
‘awnsay

sbumas Jorenioy

1dnusul sixy

1dnua|
ndino |sued

ndino
Joued

|oued |01U0D

indino
|aued ssad0.d

joyenioy

]
—|]
@ = _ -
ndino 1oeidion [Jweiboig 10doy
| weiboid ueis
Jorenioy weiboid welboig [sepuen
$S9001d loqoy puewwod

puUBIWOD 1070y SS3201d
pu3z

weiboid 1o1diau|

uolrelidx3 JawiL s)sanbay

J01e19d0O

1sanbay Joresado

induj
|aued [04U0D

ndu|
|]aued ssadold

1dnuiaiug
induj jaued

Figure 58. Generated Design for Robot Controller System, Version 2 - Default Target

Environment

532

synchronous function in question. Similarly, for module allocation, the default decision
allocates a separate module for the synchronous function in doubt. These decisions,

while not incorrect, seldom lead to an efficient design.

