National Institute of Standards & Technology

Gaithersburg, Maryland
June 30, 2001

NIST AODV OPNET Model

Programming Reference

Written

By
Lyes Guemari

Guest Researcher

Table of content

3I. Introduction

3II. State variables

3Routing Table

3Request Sent Repository

4Request Seen Repository

4Successor Table

4Ack Pending List

4Transmission Window Table

5III. Discovery Package

5aodv_initiate_discovery

5aodv_continue_discovery

5aodv_terminate_discovery

5aodv_rreq_pk_receive

5aodv_is_req_fresh_enough

5aodv_update_or_create_reverse_entry

6aodv_rrep_pk_generate_from_destination

6aodv_gratuitous_rrep_pk_generate

6aodv_rrep_pk_generate_from_relay

6aodv_rreq_pk_forward

6aodv_rrep_pk_receive

6aodv_cancel_pending_request

7IV. Maintenance Package

7aodv_rerr_pk_receive

7aodv_rerr_pk_process

7aodv_non_delete_rerr_pk_process

7aodv_rerr_pk_generate

8aodv_generate_non_delete_rerr_pk

8aodv_initiate_maintenance

8aodv_flag_lost_entries

8aodv_hello_interval_extend

8aodv_maintain_local_conn

9V. Data transmission Package

9aodv_data_pk_receive_from_mac

9aodv_data_pk_receive_from_appl

9aodv_data_pk_queue

9aodv_data_pk_queue_head

9aodv_data_pk_dequeue

9aodv_data_pk_dequeue_tail

10aodv_ack_timeout_schedule

10VI. Buffer Package

10aodv_buffer_drop

10aodv_buffer_empty

10aodv_buffer_serve

10aodv_buffer_size

10VII. Miscelleanous

10aodv_pk_send

11aodv_prg_add_prec

11aodv_prg_remove_prec

11aodv_prg_add_successor

11aodv_prg_remove_from_prec_lists

11aodv_prg_print_entry

12aodv_prg_print_path

12aodv_prg_print_rt

12aodv_print_major

12aodv_print_minor

I. Introduction

The present document serves as a reference for the NIST/AODV OPNET Model, which is downloadable from the Wireless Communication Technologies Group website – http://w3.antd.nist.gov/wctg.

This document makes a listing of the state variables and the primary functions that are directly invoked from within the AODV Routing Process. The functions are commonly classified either according to the context they operate in (discovery, maintenance, etc) or to the object they attempt to manipulate (data packet, reply packet, data, buffer, etc).

For instance, the function that returns the size of the data (send) buffer, will be called aodv_buffer_size(…).

II. State variables

Routing Table

Declaration

Aodv_Route_Table_Stat

my_route_table;

Description

A routing table in the context of our model is nothing but a simple array of N_MAX routing table entries. Although this approach may seem a bit to rigid (as the number of total entries “N_MAX” that can be held in the routing table has to be fixed once for all before the compilation), it provides a better performance when it comes to simulation times for relatively larger networks.

For more information, you can refer to the “Aodv_Route_Table_Stat” and “Aodv_Route_Table_Entry” external files.

Note: In the following sections, the constant N_MAX refers to the maximum number of nodes within the simulated network.

Request Sent Repository

Declaration
Aodv_Req_Sent_Attr

req_sent_rep[N_MAX];

Description

Each time a RREQ is generated by a node, the latter keeps a record of it in its request sent repository.

For instance, if the current node generates a RREQ for a destination “i”, then req_sent_rep[i] will hold all the needed information incase of an eventual rebroadcast. These information include a copy of the RREQ packet itself, a counter of the total number of retries, and a RREP_WAIT_TIME timer (if no reply is received for a given destination within a RREP_WAIT_TIME period of time, then the current node should rebroadcast a RREQ for that same destination).

Request Seen Repository

Declaration

Aodv_Req_Seen_Attr

req_seen_rep[N_MAX];

Description

Each node keeps records of all the broadcast RREQ that it receives. Thus, req_seen_rep[i] potentially contains the Broadcast ID and the reception time of the last received received RREQ from the node “i”.

Successor Table

Declaration

Aodv_List *

successor_table;

Description

Each time a node "A" is added to the list of precursor of a given destination "B", a function is indirectly called to add "B" to the list of nodes to which "A" is a precursor. Thus, when the link to A is no longer available and node wants to expunge it from its routing table, node has only to process entries that are listed within the successor list of "A".

Ack Pending List

Declaration

Aodv_List *

ack_pending_list;

Description

This list holds the data packets that are waiting for acknowledgments. Each entry contains a copy of the data packet and an ACK_WAIT_TIME timer. If no ack is received within this period of time, the node should rebroadcast the data packet.

Transmission Window Table

Declaration
int

trans_window_locked[N];

Description

When a packet is sent to a next hop node “i”, the transmission window is immediately locked (trans_window_locked[i] is set to 1). The window is released as soon as the next hop acknowledges the data packet.

III. Discovery Package

aodv_initiate_discovery (int dest)

Arguments dest Destination IP address of the requested node.

Return Value void

Description Initiates the discovery service for a given destination.

aodv_continue_discovery (int dest)

Arguments dest Destination IP address of the requested node.

Return Value void

Description Rebroadcast a request for a given destination. This function is called when no reply was received for the previous request and there is still a possibility to renew it.

An expanded ring search method is automatically used here.

aodv_terminate_discovery(int dest)

Arguments dest Destination IP address of the requested node.

Return Value void

Description This procedure is called when the discovery process has arrived to an end, and no reply was received. The node, then, drops the data buffer and resets the request record within the request sent repository.

aodv_rreq_pk_receive(Packet* rreq_pk_ptr)

Arguments rreq_pk_ptr Pointer to the received RREQ packet.

Return Value void

Description This routine receives the aodv RREQ packet from the lower layer and decides whether the node should process the packet, discard it or simply forward it.

aodv_is_req_fresh_enough(Packet* rreq_pk_ptr)

Arguments rreq_pk_ptr Pointer to the received RREQ packet.

Return Value Boolean

Description
Check whether the BroadcastID of the request is greater than the last seen. If so, RREQ is automatically processed, and the RREQ is recorded in the req_seen_rep. Else, node checks whether RREQ packet was seen less than RECORD_BROADCAST_TIME seconds ago. If so, RREQ must be discarded. Else, it is processed.

aodv_update_or_create_reverse_entry(Packet* rreq_pk_ptr)

Arguments rreq_pk_ptr Pointer to the received RREQ packet.

Return Value void

Description
This routine decides whether to create or update a reverse entry following the reception of a RREQ packet.

RREQs which turn out to be hello messages (RREQ.dest = RREQ.source) are treated differently.

aodv_rrep_pk_generate_from_destination(Packet* rreq_pk_ptr)

Arguments rreq_pk_ptr Pointer to the received RREQ packet.

Return Value void

Description
This function is called when a RREQ has reached its destination and node wants to reply. Once the RREQ packet is generated, the procedure unicast it back to the node upstream (node from which RREQ was received) (PreviousHop field).

aodv_gratuitous_rrep_pk_generate(Packet * rreq_pk_ptr)

Arguments rreq_pk_ptr Pointer to the received RREQ packet.

Return Value void

Description Generate a gratuitous RREP and unicast it to the destination node (node for which RREQ was originally generated).

aodv_rrep_pk_generate_from_relay(Packet* rreq_pk_ptr)

Arguments rreq_pk_ptr Pointer to the received RREQ packet.

Return Value void

Description This routine is called when an intermediate node receives a RREQ an has fresh enough route to generate a RREP for the requested destination.

aodv_rreq_pk_forward(Packet* rreq_pk_ptr)

Arguments rreq_pk_ptr Pointer to the received RREQ packet.

Return Value void

Description Node does not have a fresh enough entry (or does not have an entry at all) to answer the received RREQ, so it decides to forward it. Node increments the Hop Count field and decrements the TTL field.

Note that packet is sent to the MAC layer only if TTL > 0.

aodv_rrep_pk_receive(Packet* pk_ptr)

Arguments pk_ptr Pointer to the received RREP packet.

Return Value void

Description This routine receives the aodv RREP packet from the lower layer and decides whether the node should process the packet or simply forward it.

aodv_cancel_pending_request(int dest)

Arguments dest Destination IP address of the requested node.

Return Value void

Description This routine is called to cancel a pending request for a given destination. Obviously, this means that a reply was received for that same destination.

IV. Maintenance Package

aodv_rerr_pk_receive(Packet* rerr_pk_ptr)

Arguments rerr_pk_ptr Pointer to the received RERR packet.

Return Value void

Description This routine is called to redirect the received RERR packet. In fact, different functions are called according the fact that the N flag is set or not.

aodv_rerr_pk_process(Packet* rerr_pk_ptr)

Arguments rerr_pk_ptr Pointer to the received RERR packet.

Return Value void

Description This routine receives regular RERR packets (N flag set to 0). When such a packet is received, node effectively processes it, only if the previous hop is the next hop toward the unreachable destination (this is done for each destination included in the list of unreachable destinations of the RERR packet). If so, invalidates the entry with the new sequence number and checks the precursor list of the entry. If it is empty, destination is removed from the list of unreachable destinations. Else, it remains there. If at least one destination is still in the list of unreachable destinations, then the RERR is rebroadcast. In the other case, RERR is destroyed.

aodv_non_delete_rerr_pk_process(Packet* rerr_pk_ptr)

Arguments rerr_pk_ptr Pointer to the received RERR packet.

Return Value void

Description This routine receives the RERR packets whose N flag is set. When such a packet is received, node effectively processes it, only if the previous hop is the next hop toward the unreacheable destination (the one included in the list of unreachable destinations of the RERR packet). If so, the current node checks the precursor list of the entry corresponding to the unreachable destination.

If it is empty, RERR has reached the source node. The latter initiates a discovery service in order to update its entry for the repaired destination.

Else, if the precursor list is not empty, then node simply forwards the RERR.

In all other cases, RERR is destroyed.

aodv_rerr_pk_generate(int dest_ip_addr, int err_case)

Arguments dest_ip_addr Destination IP address of the lost node.

 err_case Error case (see below)

Return Value void

Description This routine is called whenever a node needs to generate a RERR packet. This could happened in three cases:

Case (i) the link with the node upstream has broken and no repair was attempted.

Case (ii) the node has received a packet for which it does not have a route. RERR packet generation is different according the case.

Case (iii) fail to repair a specific destination. the difference between this case and case (i) is that node does not to be invalidated as it already has been.

aodv_generate_non_delete_rerr_pk(int dest_ip_addr)

Arguments dest Destination IP Address of the lost node.

Return Value void

Description This routine is called when an entry is repaired with a different length (hop count). In this case, generates a RERR packet with the N flag set. The RERR packet includes the repaired destination IP address and its sequence number.

aodv_initiate_maintenance(int dest, int source)

Arguments dest Destination IP Address of the lost node.

Source Destination IP address of the source node (along the broken route).

Return Value void

Description This routine is called when a route breaks and node wants to attempt a local repair to restore it.

aodv_flag_lost_entries(int node_downstream, int final_destination)

Arguments node_downstream Destination IP Address of the lost node.

final_destination Destination IP address of the final destination along the broken route).

Return Value void

Description This procedure is called when the node up stream an active link is lost. In this case, and if the REPAIR mode is enabled, then node flags all the other destinations that have been lost because of the link breakage before it attempts to repair the route for the final destination.
aodv_hello_interval_extend ()

Arguments No arguments.

Return Value void

Description This routine invalidates the current hello interruption if any, and schedules a new interruption for the next hello interval.

aodv_maintain_local_conn(int previous_hop)

Arguments previous_hop Source IP address as indicated in the IP header of the received broadcast packet.

Return Value void

Description This routine is called whenever a broadcast is received (to the exception of Hello messages). The idea is to update the previous hop entry in the routing table. The previous hop is the node that last broadcast the packet.

V. Data transmission Package

aodv_data_pk_receive_from_mac(Packet* pk_ptr)

Arguments pk_ptr Pointer to the received data packet.

Return Value void

Description
This routine handles the incoming data packets from the MAC layer (this excludes data packet that are not destined for the current node): If a route is already available, the packet is immediately sent to the next hop destination. Else, this routine destroys the packet and broadcasts a RERR message to the neighboring nodes.

aodv_data_pk_receive_from_appl(Packet* pk_ptr)

Arguments pk_ptr Pointer to the received data packet.

Return Value void

Description
This routine takes the upcoming data packet in charge: If a route is already available, the packet is immediately sent to the next hop destination. Else, this routine initiates a route discovery service if none is pending for that same destination.

Note that this routine processes only data packets arriving from the internal source.

aodv_data_pk_queue (Packet* pk_ptr)

Arguments pk_ptr Pointer to the data packet to queue.

Return Value void

Description
Queue the given data packet into the appropriate buffer. The buffer whose index corresponds to the packet destination.

aodv_data_pk_queue_head (Packet* pk_ptr)

Arguments pk_ptr Pointer to the data packet to queue.

Return Value void

Description Queue the given data packet in the first position of the corresponding buffer.

aodv_data_pk_dequeue (int index)

Arguments index Index of the sub-queue from which a packet should be dequeued.

Return Value Packet*

Description Returns the first packet (first in) from the indicated data buffer.

aodv_data_pk_dequeue_tail (int index)

Arguments index Index of the sub-queue from which a packet should be dequeued.

Return Value Packet*

Description Returns the last packet (last in) from the indicated data buffer.

aodv_ack_timeout_schedule(Packet* data_pk_ptr)

Arguments data_pk_ptr Pointer to the just sent data packet.

Return Value void

Description
This routine is called when a data packet is sent to the MAC Layer. Specifically, this procedure schedules an interrupt to occur after Wait_Ack seconds. If no ack is received within this period of time, the process transits to the Ack_Timeout State in order to retransmit the lost packet.

However, if an ack is received, the ack-timeout interrupt is cancelled (see Rcv_Ack State).

VI. Buffer Package

aodv_buffer_drop (int index)

Arguments index Index of the sub-queue.

Return Value void

Description Flushes the corresponding buffer if it is not empty

aodv_buffer_empty (int index)

Arguments index Index of the sub-queue.

Return Value Boolean

Description Returns OPC_TRUE if buffer is empty OPC_FALSE otherwise.

aodv_buffer_serve (int index)

Arguments index Index of the sub-queue.

Return Value void

Description This routine is called whenever an entry is created or restored. It de-queues the first packet in the sub-queue, and routes it to its destination.

aodv_buffer_size (int index)

Arguments index Index of the sub-queue.

Return Value int

Description Returns the number of data packets waiting for this destination.

VII. Miscellaneous

aodv_pk_send(Packet* pk_ptr, int next_hop)

Arguments pk_ptr

Pointer to the packet to send to the MAC layer.

 next_hop
Destination IP address (as in the IP header) of the packet (-1 if it is a broadcast).

Return Value void

Description
This routine sends the aodv packet to the lower Layer indicating its next hop destination through an ICI. The "IP Header" (nextHop and previousHop) fields are set by this routine. Route utilization records are also maintained at this point.

aodv_prg_add_prec(int prec, int dest)

Arguments prec Destination IP address of the precursor.

 dest Destination IP address of the target node for which prec is a precursor.

Return Value Boolean

Description Add the node "prec" to the precursor list of the given entry "dest".

Note that the precursor node is inserted in a sub-list whose index equals to its destination IP address. This makes it easier to remove the node if it is eventually lost.

aodv_prg_remove_prec(int prec, int dest)

Arguments prec Destination IP address of the precursor.

 dest Destination IP address of the target node for which prec is a precursor.

Return Value void

Description
Remove the node "prec" from the precursor list of the given entry "dest".

aodv_prg_add_successor(int dest, int prec)

Arguments dest Destination IP address of the target node for which prec is a precursor.

 prec Destination IP address of the precursor.

Return Value void

Description
Each time a node "A" (prec) is added to the list of precursor of a given destination "B" (dest), this function is called to add "B" in the list of nodes to which "A" is a precursor. Thus, when link to A is no longer available and node wants to expunge it from its routing table, node has only to process entries that are listed within the successor list of "A".

aodv_prg_remove_from_prec_lists(int prec)

Arguments prec Destination IP address of the lost node.

Return Value void

Description
When a node "A" (prec) is no longer available, the current function is called to remove it from any precursor list within the routing table. To do so, the function reads the entry corresponding to the node "A" within the "reverse precursor list" and gets the list of entries where "A" is a precursor. It then goes through all these entries and removes the lost node from their precursor lists.

aodv_prg_print_entry(int dest, int trace_lev)

Arguments dest IP address of the entry to print.

 trace_lev Priority of the current printing.

Return Value void

Description Prints the routing table entry for the given destination.

aodv_prg_print_path(int src, int dest, int trace_lev)

Arguments dest IP address of the entry to print.

 trace_lev Priority of the current printing.

Return Value void

Description Prints the path between a source and a destination.

aodv_prg_print_rt(int trace_lev)

Arguments trace_lev Priority of the current printing.

Return Value void

Description Prints the routing table of the current node.

aodv_print_major(char * msg, int trace_level)

Arguments msg Pointer to the message to print.

 trace_lev Priority of the current printing.

Return Value void

Description Prints a major message (with complete header: current node address, current time, etc).

aodv_print_minor(char * msg, int trace_level)

Arguments msg Pointer to the message to print.

 trace_lev Priority of the current printing.

Return Value void

Description Prints a minor message (no header).

PAGE
13

