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Abstract

In this paper, we present a multi-gate mesh network architecture that has been developed to ensure

high performance and reliability under emergency conditions when a system expects to receive power outage

notifications and exchanges. In order to handle the meteringtraffic, under time varying outage conditions we

introduce a multi-gate and single-class back-pressure based scheduling algorithm, which takes into account

both the hop-count, as well as the queue length of each mesh node. An important requirement of this

algorithm is that all the meter nodes should always maintaina separate path to each gateway. We first

quantify the stability region of the network when our novel algorithm is applied to schedule the packets. We

then present a numeric analysis to prove that the overall network delay is reduced as a result of employing

the proposed scheduling algorithm. Moreover, we also theoretically prove that the network is always able

to remain stable as long as the arrival rate vector lies inside the stability region provided by our scheduling

algorithm. Finally, we derive a distributed objective function that is adopted by the practical implementation

of the packet-scheduling scheme. The simulation results indicate that under the context of the multi-gate

network, our packet-scheduling scheme can indeed significantly improve the network’s reliability and delay

performance, which are important factors under outage conditions.
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I. INTRODUCTION

One of the most important issues in Smart Grid (as defined in the US Energy Independence and Security

Act of 2007 [1]) is to provide a reliable and secure two-way end-to-end communications system for the

Advanced Metering Infrastructure (AMI). The AMI system aims at providing consumers with knowledge

of their energy usage and the capability of monitoring and controlling the electrical system components.

While networking technologies and systems have been greatly enhanced, the smart grid faces challenges

in terms of reliability and security in both wired and wireless communication environments. For instance,

smart home appliances represent a major part of the Smart Grid vision of improving energy efficiency and

they have to communicate with entities and players in other Smart Grid domains via home area networks

and neighborhood area networks. For inter-operable networks, the appropriate use of wired and wireless

technologies has been the main focus for smart grid last milecommunication networks. One example of

the latter is Power Line Communication (PLC) [2], which is receiving considerable attention for home area

networking applications. At the same time, Wireless LAN (WLAN) techniques, such as the IEEE 802.11

family of standards [3] with their maturity and cost effectiveness, have been extensively deployed for

wireless access and home entertainment. However, to provide a large coverage area for AMI in residential

areas, multi-hop communication is vastly favored over long-range single-hop links. Indeed, the benefit

of multi-hop transmissions is that of combating the rapid decay of the received electromagnetic signal

strength, as the communication distance increases. Although there has been a tremendous advancement

in mesh networking, from the architectural point of view, the AMI network should be designed to ensure

a high degree of reliability, self-configuration, and self-healing. Meeting these requirements depends not

only on the selection of a mesh routing protocol, medium Access Control (MAC) protocols, and physical

(PHY) layer, but also on the nature of the traffic at its application layer.

For example, the time-varying traffic generated under emergency situations poses a significant challenge

in ensuring the reliability and timeliness of the smart gridnetwork. In particular, outage management is

one example where a system expects to receive power outage notifications and an exchange of information

among all the meters. This situation tends to increase traffic load, resulting in severe network congestions.

Furthermore, in a multi-hop mesh network, a meter which represents a mesh node, should not only transmit

its own generated packets, but also those received from neighboring meters.

In the case of a conventional neighborhood area network, a residential area is normally divided into

separate regions where meters (i.e., mesh nodes) in each region communicate with the AMI headend

through their local gateway point. Under such conditions, meters closer to the local gateway (i.e., last
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hope nodes) are expected to experience more severe congestion than those further away and this could

create a bottleneck, especially under outage conditions. In order to allow collective participation in the

routing, it is advantageous to combine all the sub-networksinto a larger network with multiple gateways

where meters can access to any of the gateways based on local traffic activity [4].

Multiple gateway networks, also known as any-cast services, have been an important issue for internet

access. Their function is to provide a mechanism that can select one of many servers in the network [5],

[6]. For mobile ad-hoc and sensor networks, any-cast communications can be applied in situations where

there are multiple sinks in the network and the main strategyis to find the nearest sink [7]–[9]. With

these networks another challenge arises from the shared medium if a MAC/CSMA protocol, such as IEEE

802.11, is used. In this situation, interference due to traffic flows sharing the same path as well as other

traffic using different links, could affect the network throughput and delay performance. Recently, there

has been increasing interest in the design of distributed CSMA algorithms at the MAC layer to maximize

network performance [10]–[15]. In [12] a CSMA algorithm with a rate control has been proposed for

multi-hop networks. The combined algorithm can achieve an optimal performance under ideal conditions.

The authors in [12] have also expanded their analysis for any-cast and multi-cast services, which are

presented in the Appendix in [13]. However, the analysis which is based on the assumption of continuous

back-off time and instantaneous channel feedback, ignoresthe effect of collusion. Although CSMA-based

algorithms have shown a throughput optimality, their delayperformance for practical applications can be

worse than that of the Max-Weight algorithm [10], [11], [15], [16]. The basic concept of the Max-Weight

(also known as back-pressure) algorithm for a multi-hop network was first introduced in [17]. It will

schedule any packet through a specific route according to thequeue-length difference of each single-

direction single hop link. Essentially, the scheduling algorithm presented in [17] endeavors to mitigate the

queue length difference between any pair of mesh nodes in thenetwork to the maximum extent. They

provide a statistical analysis to prove that the algorithm is able to achieve the maximum stability region,

albeit without providing any distributed solution. Since then, this algorithm has found its application

in many areas of wired or wireless communication systems [18]–[24]. Additionally, a large number of

variants of the algorithm were put forward with different objective functions (OF) in wireless multi-hop

networks. For instance, in [25], the authors modify the OF sothat head-of-the-line packet delays are taken

into consideration. In [26], [27], a related delay-based index policy that provides exponential weight to

the delay (the so-called exponential rule) is shown to be throughput-optimal. The authors of [28] consider

a single transmitter connecting to a number of destinationsvia an ad-hoc network. A separate queue
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is maintained for each destination at each relay node. However, the delay performance of the original

back-pressure algorithm [17] may become uncontrollable for the following two reasons. Firstly, given

F classes of flows in the entire ad-hoc network, which are distinguished by the destination,F queues

remain at each mesh node, although only one queue is served ata time. Based on this structure, the

complexity of maintaining the queuing data at each node increases proportionally with the number of

potential destinations, which further increases the delayof the original back pressure algorithm. Secondly,

due to a lack of contribution from the hop-count to the OF, it is quite possible that the original back-

pressure algorithm in [17] may route some packets through a much longer route rather than the shortest

path to the obliged destination.

Against this background, the main objective in this paper isto design a low complexity Max-Weight

distributed routing algorithm that can achieve a low delay performance. Therefore,our first contribu-

tion is to propose a hop-count based single-class back-pressure scheduling algorithm, which can

significantly reduce the delay when compared with the original back pressure algorithm [17]. For

instance, the authors of [29] have put forward a novel OF for the centralized algorithm, which jointly

takes into account the hop-count as well as the queueing datawaiting in the buffer for each node’s

concern. However, each packet has a single destination, which doesn’t change the multi-class queueing

data structure maintained at each node where a separate queue is maintained for every class of packets.

Since the destination of each new packet injected into the mesh network was determined and could be

any of the nodes constituting the network, the hop counts to all potential destinations need to be obtained

from time to time. This definitely adds to the traffic load, as well as the complexity of calculating the

OF, hence increasing the delay of the proposed algorithm.

As opposed to previous works [17], [25]–[29]our second contribution is to embed our proposed

scheduling algorithm into a multi-gate network structure, where the destination of any packet

injected is not fixed beforehand.In other words, the final destination may vary as the packet passes

through each relay-node and cannot be determined, until it reaches the final destination. Given this

flexibility, the processing delay is significantly reduced as only one queue needs to be maintained at

each node. Based on the above distinct features of the proposed algorithm compared with the original

back-pressure algorithm [17],our next contribution is to quantify the stability region an d analyze the

reduction of the overall network delay, which is a result of employing our scheduling algorithm.

We will analyze the contradictory impact of the key parameters employed by the OF of our algorithm to

enhance the throughput and reduce the delay, which leads to the necessity of finding appropriate values
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for the parameters, so that a trade off between enhancing thestability region and reducing the network

delay can be maintained. Additionally, we prove that the network is able to remain stable as long as the

arrival rate vector lies inside the stability region.

The scheduling solutions presented by all the above mentioned back-pressure based algorithms, i.e. [17],

[29], are achieved by optimizing the centralized OFs via exhaustively searching all possible scheduling

solutions. These centralized algorithms require too much time and complexity to implement in the context

of ad-hoc wireless communication. Thus, a large variety of distributed algorithms, such as those of [30]–

[36] were proposed to apply the OFs featuring the centralized algorithms.Our fourth contribution is to

derive the distributed OF from the centralized OF used by ourscheduling algorithm, so that it can

be used for practical implementation. Finally, for our implementation we use an extended experimental

test-bed developed in [4]. This test-bed consists of four gateways and 48 mesh nodes where each node is

generating variable bit rate (VBR) traffic, which are then forwarded towards the master gateway as their

final destination.

The organization of the paper is as follows. In Section II themulti-gate mesh network architecture is

presented. In Section III, the novel multi-gate hop-count and queue-length based back-pressure algorithm is

proposed. Next the corresponding stability region is defined in Section III-A, in the context of the proposed

algorithm. Moreover, the ability of our algorithm to reducethe overall network delay is numerically

analyzed in Section III-B. Additionally, the capability ofour algorithm to stabilize the network is proved

in Section III-D and the appendix. In Section IV, the OF of thedistributed implementation method is

derived from the OF employed by the proposed centralized algorithm. Other aspects of the implementation

of the proposed algorithm, together with the simulation results, which are obtained by using a proactive

tree-based routing manner, are presented in Section V. Thisis then followed by the conclusion and final

remarks, which are presented in Section VI.

II. M ULTI -GATE ROUTING NETWORK ARCHITECTURE

A neighborhood area network may consist of multiple mesh sub-networks where mesh nodes represent-

ing meters in each sub-network can only access the local gateway. Each gateway, which is also referred

to as the Data Aggregation Point (DAP) by the smart grid community is connected to the master gateway

(headend) via a wired or wireless link. Due to the variable nature of the traffic, some gateways may suffer

from more congestion than others. Under such conditions, nodes belonging to neighboring sub-networks

cannot participate in the routing to reduce the traffic load.In order to allow collective participation

in the routing, it would be advantageous to combine all the sub-networks into a larger network with
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multiple gateways (DAPs) where all the meters can access anyof the gateways, as shown in Fig. 1.

This arrangement is expected to enhance the self-healing and self-organization abilities of the network if

some of the gateways and nodes become non-operational or newnodes are added to expand the network.

Designing such a network would require developing a flexiblemulti-gate routing protocol so that each

node (meter) can have a separate path to the gateways

We use symbolG andN to denote the set containing all theG gatewaysG1, G2, . . ., GG and all theN

mesh nodes in the entire investigated mesh network. Given any nodeṄ ∈ N, Ĥ(Ṅ) stands for the number

of hops from nodėN to the nearest gateway. More specifically,Ĥ(Ṅ) can be defined as

Ĥ(Ṅ) = min
Ġ∈G

H(Ṅ → Ġ), (1)

whereH(Ṅ → Ġ) stands for the number of hop counts associated with the shortest path from nodėN to an

arbitrary gatewaẏG. As the maximum number of hops of a loop-free route is limitedby a fixed number

H, the complete setN can be divided intoH subsets, which are denoted asNh with h = 1, . . . , H. For

any given nodėN ∈ N, we haveṄ ∈ Nh, iff Ĥ(Ṅ) = h. Additionally, the queue length of the packets

inside the buffer of nodėN at thetth moment is denoted asQ(Ṅ, t).

We denote symbolL as the set containing all the single-hop single-direction links. Suppose the mesh

network encompassesL single-hop single-direction links, which are denoted asL1, L2, · · · , LL, respectively.

Intuitively, the hop-count difference between the transmitter and receiver of any single-hop link can only

be one of the following values:+1, 0 or −1. According to this metric, we may divide the entire link-setL

into three subsetsLI, LII andLIII . More exactly, all the links belonging toLI are named as Type-I links or

forwarding transmissions, while the transmitters of all the Type-I links have one more hop-count than the

receivers. Similarly, all the links belonging toLII are named as Type-II links or peer-level transmissions,

while the transmitters of all the Type-II links have the samenumber of hop-counts as the receivers. Lastly,

all the links belonging toLIII are named Type-III links or backwards transmission, while the transmitters

of all the Type-III links have one less hop-count than the receivers.

The routing matrix is denoted asR, having elements from the set{+1,−1, 0}, representing all the

one-hop links in the wireless mesh network. TheN rows of matrixR correspond to theN mesh nodes,

and itsL columns correspond to all theL single-hop single-direction links. There are only two non-zero

elements in each column ofR. More specifically, in thelth column ofR, the value of the element with

its row-index corresponding to the transmitter node ofLl is +1, and that corresponding to the receiver

node ofLl is assigned to−1.

The (L × 1)-element binary vectors represents a potential activation vector. If theith element ofs
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is equivalent to one, LinkLi is activated. Otherwise, LinkLi is not activated. The element values ofs

are determined so that they comply with the selected interference model. That is, if all the links marked

by non-zero elements ofs are activated simultaneously, there will not be any packet-loss due to mutual

link interference. Given a certain interference model, there will be more than one solution satisfying

the requirement given by the model, which are able to offer mutual interference-free link combinations.

For brevity, all possible solutions to a certain interference model are collectively included in one setS.

Therefore, the elements inS are recorded ass1, s2, . . ., s|S|, where|S| is the cardinality ofS - the number

of vectors inS. e ∈ S denotes the activation vector that is ultimately selected out among all the vectors

in S for the next time slot, based on the OF of the scheduling algorithm.

III. N OVEL SCHEDULING ALGORITHM

The authors of [17] presented a throughput-optimized back-pressure based Max-Weight scheduling

algorithm. It does not only quantify its stability region, but also proves that the network is always capable

of maintaining stable status as long as the arrival rate vector is under the stability region. However, the

centralized back-pressure algorithm in [17] does not take the delay issue into account. Hence, it will cause

a longer-than-average delay and even routing loop problem.This would be a crucial issue in smart grid,

specially under outage conditions. Nonetheless, our algorithm can be regarded as a variant of the original

back-pressure algorithm proposed in [17]. Given the same network topology however, its performance

exceeds the original back-pressure algorithm in two aspects: firstly, by employing three parametersα,

β and γ to quantify the metrics of Type-I, Type-II and Type-III links in respect to the hop counts, the

average overall time for a packet to traverse the network from the source to the destination is dramatically

reduced, as compared with [17]. Secondly by adopting a multi-gate structure the processing complexity

imposed by the proposed scheduling algorithm would be much lower than the Max-Weight algorithm

in [17], hence further reducing the processing delay. Each mesh-node would only require keeping one

queue containing all the packets arriving at that node.

We assume that the hop-count of a node to the nearest gateway is known. In order to reduce the overall

propagation delay, nodes with less hop-count to the nearestgateway should be the next hop. Moreover,

a larger arrival rate will be accommodated if the average queue length of each node is reduced. For an

arbitrary nodeNh,i ∈ Nh, any of its neighbors is included in one of the setsNh−1, Nh andNh+1. Hence,

in order to reduce the overall propagation delay of delivering the packets initiated at the nodeNh,i to any

of theG gateways, its neighboring nodes belonging toNh−1 have the privilege over the nodes from the

setsNh andNh+1 as the next hop.
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In order to accommodate a larger arrival rate initiated at each node, the queue length of each node should

be reduced rather than increased with time and a balance of the queue length among all nodes should be

observed with time passing. Hence, the neighboring nodes ofthe transmitter nodeNh,i, having a shorter

queue size, should enjoy the privilege of being a receiver. Based on the above discussion the activation

vectore(t + 1) can be calculated through maximizing the centralized OF containing both hop-count and

queue-length metrics. More exactly:

e(t+ 1) = argmax
s∈S

{

dT (t)D̄s
}

, (2)

wheres is an arbitrary candidate activation vector in setS. Additionally, theL elements in vectord(t)

and the diagonal elements of the(L×L)-element matrixD̄ in (2) respectively represent the queue-length

difference and hop-count difference between the transmitter and receiver associated with theL links.

Given the transmitting node of linkLi denoted asT(Li) and its receiver node asR(Li), the ith element of

d(t) is defined as:di(t) = Q
(

T(Li), t
)

−Q
(

R(Li), t
)

.

In (2), theith diagonal element of the(L×L)-element diagonal matrix̄D represents the metric ofLi in

terms of hop counts. HencēD can be considered as a function ofD, whereD is a diagonal matrix with

its ith diagonal elementDi ∈ {+1, 0,−1}, for all i = 1, 2, . . . , L. The elementDi indicates the hop-count

difference between the transmitter and receiver of linkLi, and is defined as:Di = Ĥ
(

T(Li)
)

− Ĥ
(

R(Li)
)

.

Given T(Li) ∈ Nh, the value ofDi can only fall into one of the following three categories: ifLi is a

Type-I link with R(Li) ∈ Nh−1, thenDi = +1; if Li is a Type-II link with R(Li) ∈ Nh, thenDi = 0; if

Li is a Type-III link with R(Li) ∈ Nh+1, thenDi = −1. We useα, β and γ to quantify the hop-count

related metric of all the Type-I, Type-II and Type-III linksrespectively. Since we want to reduce the

overall propagation delay, less hop-count routes are preferred. Hence, the three parameters may be ranked

in non-strict descending order asα > β > γ > 0. In order to make the values ofα, β and γ positive,

as well as linearly proportional to the genuine hop-count differenceDi ∈ {+1, 0,−1}, the values of

D̄i ∈ {α, β, γ} are set to bēD = (D+ µI)ν. If we wantγ > 0, we should letµ > 1 andν > 0.

A. Stability Region

According to [17], to enable the network to operate in steadystatus, the rate with which packets arrive

at a certain mesh-node should be equal to the rate with which packets leave the mesh node. The dotted

vector ȧ represents the arrival rates at theN mesh nodes at any moment. Generally speaking, any arrival

rate vectorȧ belonging to the stability regionC has to be equal or smaller than the maximum service

rate that can be provided by the mesh-network. As for a mesh network, its topology is quantified byR,
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and a certain interference model is quantified byS. Note that a server here refers to a transmission on a

single-hop link carrying packets from a certain mesh-node to its neighbor. More quantitatively, suppose a

service rate vectorf is defined such that itsith elementfi quantifies the service rate of theith server, given

any arrival rate vectoṙa under stability region, it should satisfy the conservationequations,̇a = −Rf . All

the vectorsf satisfying the conservation equation based onȧ is named as aṅa-admissible flow vector.

Additionally, all the ȧ-admissible flow vectors are collectively defined by the setFȧ.

The matrixD̄ will generate a bias of different type of servers. As been defined previously,α is used to

weigh all the Type-I servers (forwards links). Similarly,β is used to weigh all the Type-II servers (peer-

level links) andγ is used to weigh all the Type-III servers (backward links). Apparently, the advantage

of the forwarding service over the Type-II or Type-III service obviously causes a more frequent adoption

of the Type-I service compared with the frequency of using the Type-I service given the same network

topology, when the original back-pressure based scheduling algorithm in [17]. Similarly, the frequency of

utilizing Type-II and Type-III services is reduced as a result of the presence of the hop-count weighting

matrix D̄; more exactlyβ and γ in the OF (2) characterizing our scheduling algorithm. The stability

region of the mesh-network is changed correspondingly, andneeds to be re-quantified.

In other words, introducing the hop-count matrixD̄ in OF (2) is identical to associating every single-hop

link with a metric ranging between[0, 1]. The metric of every Type-I link, considered by the proposed

scheduling algorithm, is the same as that quantified by the original back-pressure algorithm, where the

weighting factors of all the Type-I links are set to1, which can be alternatively regarded asα/α.

Additionally, the metric of every Type-II link considered by the proposed algorithm to calculate its OF

is only a fraction ofβ/α of that required by the original algorithm in [17]. Finally,the metric of every

Type-III link considered by the proposed algorithm to calculate its OF is only a fraction ofγ/α of that

employed by the original algorithm in [17]. The variation ofthe metrics of different type of links can

be regarded as a result of a variation of the service rate of different types of servers. More exactly, as

the metric of the Type-I link is not changed, the service rateprovided by every Type-I link under our

scheduling algorithm remains the same as that under the original scheduling algorithm [17]. The metric

of each Type-II link and Type-III link is reduced to a factor of β/α andγ/α respectively. The reduction

of the metric of the link can be equivalently regarded as the result of the reduction of the links service

rate. Regardless of the queue length difference between thetransmitter and receiver of each node-to-node

flow, the service rate provided by every Type-II or Type-III link under the proposed algorithm is scaled

down by a factor ofβ/α or γ/α, compared with the rate in [17].
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Finally, the arrival rate vectoṙa under the stability region provided by the proposed algorithm can be

quantified as:

ȧ = −RD̄′f = − 1

α
RD̄f . (3)

Let Fȧ be the set of all flow vectors satisfying (3). Following the methodology and notation employed by

[17], the setC′ can be quantified as:

C′ ={ȧ : there existsf ∈ Fȧ, s ∈ co(S) such that for the correspondingf ,

we havefi < si if si > 0 andfi = 0 if si = 0}. (4)

Similarly, the closure ofC′, namelyC̄′ is defined as:

C̄′ ={ȧ : there existsf ∈ Fȧ, s ∈ co(S), such thatf � s}. (5)

Finally, the stability regionC is given so that inequationC′ ⊂ C ⊂ C̄′

C′ ⊂ C ⊂ C̄′ (6)

is satisfied.

B. Delay Reduction

In Section III-A, we have quantified the stability region of the network when our novel scheduling

algorithm is applied. In this subsection, we will analyze the impact of our scheduling algorithm on

network delay performance. Firstly, the scheduling algorithm will not generate influence on queueing

delay, transmission delay and propagation delay. Additionally, as we have observed, the processing delay

will be reduced at each node of the network employing our scheduling algorithm, since the reduction of

the number of queues maintained at each node will significantly reduce the processing complexity, as a

result of combining all the number of classes in [17] to a universal class. All in all, the delay of the

network specifies how long it takes for a packet to travel across the network from its source node to its

destination gateway. It usually contains two key parts: namely the overall propagation delay and overall

waiting delay.

Assume that each single-hop link in the network leads to a unitary propagation delay. Thus the overall

propagation delay is proportional to the number of hops adopted by a packet to travel across the network

from its source node to its destination gateway. Additionally, the proposed scheduling algorithm will

not have any effect on the entire waiting time. All in all, themost significant impact of our scheduling

algorithm in the network delay is the overall propagation delay; more exactly, the total hop count. Let
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us assume that the minimum number of hops required by a certain packet to reach its destination node

from the source node iṡH, which is regardless of the scheduling algorithm employed by the network.

The total hop-counts genuinely cost by the packet to reach its destination can be quantified as:

H = Ḣ +

l
∑

i=1

∆hi = l (7)

wherel is the total number of single-hop links actually traveled bythe packet on its way to the destination.

Meanwhile,∆hi refers to the number of additional hop-counts added by theith link taken by the current

packet. More exactly, we have∆hi = 0 if the ith link traveled by the current packet is a Type I (forwarding)

link having its transmitter one hop-count further than its receiver. Then we have∆hi = 1 if the ith link

traveled by the current packet is a Type II link (peer-level transmission) with its transmitter having the

same hop-counts as its receiver. Finally,∆hi = 2 extra hop counts will be added if theith link traveled

by the current packet is a Type III link (backwards transmission) with its transmitter one less hop-count

to the nearest gateway than its receiver.

Now we investigate the mean value of the incremental hop counts E(∆h) added by the links starting

from an arbitrary mesh-node, which hasnI forward links, nII peer-level links andnIII backward link.

Suppose that the service rate of theith forwarding, peer-level and backward link isfI,i = E[fI,i(t)],

fII ,i = E[fII ,i(t)] andfIII ,i = E[fIII ,i(t)] respectively. Thus, by defining

f̂ =

nI
∑

i=1

fI,i +

nII
∑

i=1

fII ,i +

nIII
∑

i=1

fIII ,i, (8)

the average probability of utilizing the forwarding, peer-level and backwards link, when the original back

pressure algorithm [17] is applied can be quantified as:

PI =

∑nI
i=1 fI,i

f̂
, PII =

∑nII
i=1 fII ,i

f̂
andPIII =

∑nIII
i=1 fIII ,i

f̂
. (9)

As a result, the average number of additional hops added by all the links transmitting from the current

node can be quantified as:

E(∆h) =PI∆hI + PII∆hII + PIII∆hIII

=

∑nI
i=1 fI,i

f̂
× 0 +

∑nII
i=1 fII ,i

f̂
× 1 +

∑nIII
i=1 fIII ,i

f̂
× 2. (10)

On the other hand, when the novel scheduling algorithm is applied, the service rate of each forwarding

link is the same, i.e.α/α as the original service rate. However, as discussed in Section III-A, the actual

service rate of the Type-II (and Type-III) links will be reduced by a fraction ofβ/α andγ/α compared
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with the original service rate, when the original back pressure [17] is applied. Ergo, by defining

ˆ̄f =

nI
∑

i=1

fI,i +
β

α

nII
∑

i=1

fII ,i +
γ

α

nIII
∑

i=1

fIII ,i, (11)

the probability of purchasing a Type-I, Type-II and Type-III link, when our scheduling algorithm is applied,

will be modified respectively to:

P̄I =

∑nI
i=1 fI,i

ˆ̄f
, P̄II =

β

α

∑nII
i=1 fII ,i

ˆ̄f
and P̄III =

γ

α

∑nIII
i=1 fIII ,i

ˆ̄f
. (12)

Thus, the mean value of additional hop-counts added by the links, starting from the current node when

our scheduling algorithm is applied, can be evaluated as:

E(∆h̄) =P̄I∆hI + P̄II∆hII + P̄III∆hIII

=

∑nI
i=1 fI,i

ˆ̄f
× 0 +

β

α

∑nII
i=1 fII ,i

ˆ̄f
× 1 +

γ

α

∑nIII
i=1 fIII ,i

ˆ̄f
× 2. (13)

ComparingE(∆h) in (10) with E(∆h̄) in (13), immediately, we havēPI > PI, P̄II 6 PII and P̄III 6 PIII ,

for all kinds of network topology. As long as
∑nII

i=1 fII ,i > 0 or
∑nIII

i=1 fIII ,i > 0, we will haveE(∆h̄) <

E(∆h); while E(∆h̄) = E(∆h) is only achieved when
∑nII

i=1 fII ,i =
∑nIII

i=1 fIII ,i = 0. That is, when the

novel scheduling algorithm is applied, the average extra hop counts added by the links starting from an

arbitrary mesh node in the smart grid network is less than that when the original back-pressure scheduling

algorithm [17] is applied. As a result, the overall propagation delay of a packet to travel across the network

from its source to destination node is ultimately reduced.

C. Trade-off between Stability Region and Delay

As can also be seen from (13), the values ofα, β and γ play an important role in determining the

delay performance achieved by our scheduling algorithm. Asdiscussed in Section III-A, it also plays

an important role in determining the value of the stability region provided by our algorithm. Generally

speaking, the stability region, which we want to increase, is roughly inversely proportional to the ratio of

α/β andα/γ. Nevertheless, the average overall network delay, which wewant to reduce, is also inversely

proportional to the ratio ofα/β andα/γ. Hence, a trade-off needs to be maintained with appropriateα/β

andα/γ values.

Two extreme cases can be illustrated in more details to address this issue. Firstly, whenα = β = γ,

there is no special preference on different types of routes,regardless of whether it is a forwarding link,

peer-level transmission or backwards link. The average overall propagation delay cost of a packet to travel
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to the destination node when the network employs our scheduling algorithm, is the same as that when

the network employs the original back pressure algorithm in[17]. According to (13), withα = β = γ,

the overall network delay will reach its maximum value givenα > β > γ. Despite of the degraded

delay performance the stability region of the network is able to reach its peak value, as discussed in

Section III-A.

On the other hand, the opposite case occurs whenα → ∞, andβ, γ both have finite values. According

to (13), with this set of values forα, β and γ, we will always haveE(∆h̄i) = 0 for all i = 1, . . . , L.

In other words, whenα → ∞, and β, γ both have finite values, the hop-counts taken by any packet

when scheduled according to our scheduling algorithm, willalways remain at its minimum hop-count

benchmark value, as only forwarding links are activated on its way. Ergo, the average overall propagation

delay of the network reaches its minimum value. However, under such a scenario the stability region

for the arrival rate will also be reduced to its minimum valuezero. In other words, network stability is

not guaranteed under such conditions. As can be seen from theabove discussion, the choice of whether

enlarging or reducing the value ofα, β and γ is contradictory in terms of either reducing the overall

network delay or enhancing the stability region. Therefore, an appropriate value ofα, β andγ should be

selected according to the specific maximum delay tolerance and maximum throughput requirements of

the mesh network investigated.

D. Proof of the Network Stability Region

The dotted vectoṙq = [q̇1 q̇2 · · · q̇N ]
T can be used to represent the queue-length values of all the

N mesh nodes at any time slot. It can be regarded as an arbitraryinstantaneous sample value of the

random vectorq(t). The system is considered to be stable if the queue-lengths of all the N mesh nodes

are proved to have a tendency of being reduced. The differentvalue of q̇ can be regarded as the different

states of an aperiodic, irreducible discrete-time Markov chain on a countable stage spaceQ. According to

the Fosters theorem [37], the Markov system is stable, if we can find a Lyapunov function̄V : RN → R

and a finite subset̂Q of Q such that the following two conditions are fulfilled. Firstly, when q̇ falls into

subsetQ̂, the incremental amount of the Lyapunov function with the time index will not blow to infinity.

On the other hand, wheṅq falls outsideQ̂, the value of the Lyapunov function will be reduced during the

next time slot. More quantitatively, as suggested in [17], the Lyapunov function and the subsetQ̂ can be

defined as̄V (q̇) = q̇T q̇ =
∑N

n=1 q̇
2
n andQ̂ = {q̇ : q̇T q̇ 6 bq} respectively, wherebq is a positive number.

Let’s assume that the arrival rate vectorȧ at an arbitrary moment is Poisson distributed with a mean and
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variance ofρa. Given a positive numberǫ, as long asa(t + 1) belongs to the stability regionC and we

can find a positive numberbq as a multi-variable function ofǫ andρa, such that

E
[

qT (t + 1)q(t+ 1)− qT (t)q(t)
∣

∣

∣
q(t) = q̇

]

< ∞ if q̇T q̇ 6 bq (14)

E
[

qT (t + 1)q(t+ 1)− qT (t)q(t)
∣

∣

∣
q(t) = q̇

]

6 −ǫ if q̇T q̇ > bq (15)

are both able to be achieved respectively, the mesh network is considered to be stable. Based on this

principle, we will propose and prove the following theorem:

Theorem 1: Given the activation vectore(t + 1) that maximizes the value of centralized OF (2)

characterizing our scheduling algorithm, anα > 1 and the stability regionC quantified by (6) and

other formulae in Section III-A, if the arrival vectora(t+ 1) ∈ C, then the network is stable.

Proof: See Appendix, Sect. B.

IV. D ISTRIBUTED IMPLEMENTATION

The distributed algorithm proposed in this paper leads to a practical way to realize the centralized

algorithm. Firstly, a local OF derived from the OF characterizing the proposed centralized algorithm as

addressed in Section III is employed by each node as a criterion to select its next hop in the network.

Thus, a single-hop link, which has the node as the sender and the next hop as the receiver, will be

activated. Then, if collision occurs during transmission,a re-transmission will be called for. The attempt

will not stop until it fails after a pre-stipulated number oftimes. Before revealing the distributed approach

of applying the centralized algorithm featured by the OF (2)of Section III, the definition of the Single

Node Metric (SNM) and Single Link Metric (SLM) will be presented. The SNM is the product of the

queue length of a certain node, multiplied by its hop count tothe nearest gateway. More quantitatively,

given a nodėN ∈ N, the SNMW (Ṅ, t) at time t can be defined asW (Ṅ, t) = Q(Ṅi, t)Ĥ(Ṅ), whereĤ(Ṅ)

has been defined in (1). On the other hand, SLM represents the metric of a single-hop direct link. The

value of SLM associated with a link roughly stands for the SNM-value difference between the transmitter

and the receiver. More quantitatively, for a given linkLi ∈ L, with i = 1, 2, · · · , L, the SLMW (Li, t) can

be defined asW (Li, t) = d(Li, t)D̄(Li), where the scalarsd(Li, t) and D̄(Li) quantify the queue-length

difference and hop-count difference respectively, both between the transmitter nodeT(Li) and the receiver

nodeR(Li) at time t. More exactly, we havēD(Li) =
[

Ĥ
(

T(Li)
)

− Ĥ
(

R(Li)
)

+ µ
]

ν, whereµ > 1 and

ν > 0 make a significant impact on the values ofα, β and γ and have to be appropriately selected, as

discussed in Section III-C. It may be worth mentioning thatdi(t) = d(Li, t) is the ith element of the

(L×1)-element vectord(t) andD̄i = D̄(Li) is theith diagonal element of the(L×L)-element matrixD̄,



14

which constitute parts of the OF in (2) characterizing the centralized scheduling algorithm described in

Section III. For aG-gateway system, let us assume that a potential transmitternodeNh,T hasM neighbors

B1(Nh,T), B2(Nh,T), . . ., BM (Nh,T), and we denoteB(Nh,T) as the neighbor set ofNh,T, which is defined as:

B(Nh,T) = {Bm(Nh,T)| m = 1, 2, . . . ,M}. The OF of the centralized algorithm, as quantified by (2), can

be equivalently interpreted using the term SLM as:

e(L)(t + 1) = arg max
s(L)⊂S(L)

{

∑

Li∈s(L)

[

SLM(Li, t)
]

}

= arg max
s(L)⊂S(L)

{

∑

Li∈s(L)

[

W (Li, t)
]

}

=arg max
s(L)⊂S(L)

{

∑

Li∈s(L)

{

[

Q
(

T(Li), t
)

−Q
(

R(Li), t
)

]

·
[

Ĥ
(

T(Li)
)

− Ĥ
(

R(Li)
)

+ µ
]

· ν
}

}

, (16)

wheree(L)(t + 1) is the set of links that are finally activated during the next time slot in a centralized

algorithm and obviouslye(L)(t + 1) ⊂ L. Moreover s(L) is an arbitrary set of links that could be

simultaneously activated without interference. Additionally, S(L) is a second-level set containing all the

sets of mutually interference-free links that could be activated simultaneously. Apparently,e(L)(t+1) ⊂
S(L) is a particular element ofS(L) that can maximize the OF displayed in (16).

In the distributed counterpart, for a given nodeNh,T, the concern is to select a single destinationR(Nh,T)

among all its neighborsB1(Nh,T), B2(Nh,T), . . ., BM(Nh,T) as the next hop. Naturally, the given nodeNh,T

constitutes a transmitter node of a certain linkLi, and the receiver node should be selected from its

neighbor-setB(Nh,T) based on a distributed OF. Due to a lack of SNM knowledge of thenodes, other than

opting for its neighbors in the distributed regime, the system is unable to jointly choose the transmitters

and receivers of all the links to be simultaneously activated during the next time slot, as implied by the

OF of the centralized algorithm in (16). Instead, each link with a fixed transmitter will choose its receiver

independently in the distributed regime. As long as a receiver nodeR(Nh,T) is selected from the neighbors

of Nh,T, a link transmitting one packet fromNh,T to R(Nh,T) will be activated. More specifically, the next

hop of a certain linkLi starting fromT(Li) is selected as:

R

(

T(Li)
)

(t+ 1) = arg max
R(Li)∈B(T(Li))

{

[

Q
(

T(Li), t
)

−Q
(

R(Li), t
)

]

·
[

Ĥ
(

T(Li)
)

− Ĥ
(

R(Li)
)

+ µ
]

·ν
}

(17)

The equation in the brackets behindmax in (17) is the closest approximation of the centralized OF that

is equivalently displayed in (2) or (16), when theith link Li is concerned in the distributed scheduling

algorithm. However, opposite to the OF of the centralized algorithm in (16), there is no element of other

links Lj 6= Li presented in the OF of the distributed algorithm in (17) whenthe receiver of a certain

link Li is being selected. Below, we begin to simplify the distributed OF in (17) without incurring any

performance loss. Since both the value ofQ(T(Li), t) andĤ(T(Li)) makes no difference for different node



15

R(Li) ∈ B
(

T(Li)
)

, the identical part related to the transmitting node in (17)can be omitted only when the

receiver node is concerned. Then (17) can be equivalently written as:

R

(

T(Li)
)

(t+ 1) = argmin
R(Li)∈B(T(Li))

{

Q(R(Li), t)
[

Ĥ(R(Li)) + µ
]

ν
}

= argmin
R(Li)∈B(T(Li))

{

Q(R(Li), t)Ĥ(R(Li))
}

. (18)

Thus, the next hop of the first packet in the queue ofNh,T is selected according to the following criterion:

R(Nh,T)(t+ 1) = min
Ṅ∈B(Nh,T)

{

Ĥ(Ṅ) ·Q(Ṅ, t)
}

. (19)

As can be seen by the OF of (19), the distributed algorithm canonly determine the next hop for a

given transmitter node. When a certain node is chosen by several transmitter nodes as the next hop, the

distributed manner has no way of predicting or scheduling these potential transmitting nodes. Conversely,

according to the centralized algorithm given in Section III, the overall optimal arrangement will not allow

one receiving node to have two transmitting nodes simultaneously. In the next subsection, we will discuss

in detail the implementation procedure of the proposed routing protocol characterized by (19), as well

as the practical methodology to solve the collision problemincurred by more than one simultaneous

transmitting node as addressed above.

V. IMPLEMENTATION MODEL AND SIMULATION RESULTS

For implementation of the back-pressure routing scheme, weused the mesh network architecture shown

in Fig. 1. A tree-base, multi-gate routing protocol developed in [4] was considered. The routing scheme is

an extension of the Hybrid Wireless Mesh Protocol (HWMP) of the IEEE 802.11s [3]. Due to the static

nature of the mesh network, we only consider the proactive part of this hybrid protocol. As mentioned

earlier, in this network every mesh node in a tree not only generates its own packets, but also relays

packets from its children nodes (except for the leaf nodes).As a result, the aggregated traffic in the

upstream link tends to increase as the hop-count reduces. Ascan be seen in this figure each gateway (G1,

G2, . . ., GG) at the root of a tree periodically broadcasts root announcements to set up its tree. We use

a randomization technique to avoid collision of root enhancement messages. It is important to note that

a gateway in this network represents the last hop node in the upstream link where the master gateway

(headend) is the final destination node. The MAC addresses ofG1, G2, . . ., GG are employed as the unique

identifications that correspond to the root announcements from the routing trees. In contrast to single

gateway, a node in a multi-gate topology has multiple entries in its tree-table representing a separate path

to each gateway [4]. With respect to the implementation of the proposed back-pressure scheme, the main

objective would be the selection of the next hop based on the SNM value. Therefore, in obtaining the
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SNM value, only the parent nodes may be used in the calculation. This is consistent with the OF (2) of

the centralized algorithm, as the elements corresponding to the parents nodes in hop-count matrixD̄ are

assigned with a higher value, as detailed in Section III. According to (19) in the proposed back-pressure

scheme, the queue-length and hop-count have to be calculated by a transmitting node, before scheduling

its packet to the next hop’s node. To implement this, we consider using beacon frames, which are primarily

used by a node to update its neighbors about its current routeto the destination [3]. For example, when

a node receives a beacon frame (or an association request) from its neighboring mesh node, it creates

(or updates) a neighbor list according to the information inthe beacon frame. The period of sending a

beacon frame should depend on the traffic model. At a high packet rate, a faster update for calculating

(19) may be needed and this would be at the expense of higher overhead [4]. It is important to emphasize

that the proposed back-pressure scheme relies on the multi-path routing described earlier. Every node

should possess an active path to all the gateways (or at leasta few neighboring gateways for a large

network). When a mesh node (meter) receives a packet from itsupper layer (self generated packet) or a

neighboring node (relayed packet), it checks its neighbor list and compares the corresponding metrics. As

the parent list is updated by a root announcement process, the neighbors’ list is updated and maintained

through the beacon frames. In our implementation, the second smallest value in (19) will be selected

from the same list to represent the next hop node in the case oflink failure. In this back-pressure scheme

the route error message is blocked in order to reduce the overhead in the network. For instance, when

a link from node A to node B is broken due to consecutive packetlosses, node A will re-schedule all

the packets from its data queue by selecting the second best neighbor as its next hop destination. The

main difference between the distributed approximation algorithm and centralized algorithm is that the

interference between links cannot be ignored by the distributed algorithm. For the distributed network, the

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) access protocol is commonly used

by the IEEE 802.11 family. This protocol controls access to the shared wireless medium, which makes it

very sensitive to interference caused by other active nodes. As a result, the stability region will be reduced

as the interference would cause transmission failure of some links, which have been activated to mitigate

the queue-length difference. This is despite the fact that the OF employed by the distributed algorithm

is derived from our centralized algorithm. Similarly, as a result of failures in transmission caused by

interference, the delay associated with the distributed algorithm is hence increased, compared with the

centralized algorithm.

In our simulation model, a multi-gate network is constructed that comprises four gateways (G1, G2, G3,
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G4) and a master gateway (Headend) with 48 meters, which are uniformly distributed. The gateways are

connected via wireless links to the Headend that representsthe final destination in the upstream link. In

our simulations the input data generated at a Variable Bit Rate (VBR), is encapsulated into fixed 512-byte

user datagram packet (UDP) packets [4]. In the physical layer the IEEE 802.11b standard is used and the

data-rate is 2 Mbps, while gateways are assumed to have an unlimited bit rate. A free space propagation

channel with a path loss factor of 4 has been used in these experiments. Further details of the testbed can

be found in [4].

In tree-based proactive routing, each gateway as the root ofa tree, periodically floods the network

by broadcasting a root announcement message. The period in which this message is generated depends

on the nature of the application. For instance, in the case ofthe smart grid, it should be sufficiently

long enough to reduce excessive overheads, but short enoughto handle changes in the network structure,

such as adding new meters or handling malfunctioning nodes (e.g., self healing). In our simulation, the

root announcement is transmitted every 32 seconds. This is marginal when compared with the overhead

associated with the beacon frame. In our experiments we observed that a beacon interval of 0.8s can

achieve the best results. For the sake of comparison we also compare the performance of the combined

multi-gate network operating both with and without packet scheduling. In the absence of packet scheduling,

the shortest path leading to the nearest gateway is selected. Fig. 4 shows the effective throughput versus

input bit rate performance at the final destination point (headend). This clearly indicates that a combination

of multi-gate and back-pressure schemes can work very well together in achieving a higher performance.

The next step in our evaluation is to compare the delay performance of the multi-gate scheme with and

without packet scheduling. Fig. 5 shows their respective average end-to-end delay performances. As can be

observed, the back-pressure scheme shows a significant improvement in delay performance as compared

with the single best-path scheme. This is mainly due to the fact that the main cause of delay in the

best path routing approach is to do with the path failure phenomenon. The link failure is the result of

unsuccessful transmission/retransmissions of packets between two neighboring hops along the best path

from a meter to the destination. Under these conditions, a new multihop path discovery process has to

be initiated and this would consequently result in a sharperincrease in delay as the traffic load increases.

In contrast, the link failure phenomenon does not exist in the case of a distributed back-pressure scheme,

where the packet delivery is performed on a hop-by-hop basis. From these results we can clearly observe

that the flexibility of the back-pressure scheme combined with the multi-path feature of the multi-gate

network structure, can be effectively distributed amongstthe gateways.
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VI. CONCLUSION

In this paper we propose a so-called multi-gate network structure and, under this architecture, we develop

a novel packet-scheduling algorithm aimed at providing reliable two-way communications from meters to

the AMI head-end, which can maintain a trade-off between maximizing the throughput and minimizing

the average overall network delay. We quantify the stability region of the network when the packets are

scheduled according to the proposed centralized algorithm. Numeric analysis of the propagation delay

justifies the capability of our centralized scheduling algorithm in reducing the average overall network

delay. We also prove that the network will always remain stable, regardless of the topology, time index or

the current queue length status, as long as the average arrival rate vector stays inside the stability region.

Ultimately, we derive a novel distributed OF from the centralized algorithm and implement it with sim-

ulation. The simulation results further justify the ability of the proposed distributed scheduling algorithm

to raise the network throughput and reduce the overall delay. Bear in mind that low latency is a crucial

factor in delivering outage messages to the outage management system in order to fix the problem.

APPENDIX

A. Preparative Lemmas and Theorem

Before stating the proposition of the theorem, we first defineN̂t as the node having the longest queue

length among all theN mesh nodes at timet. SupposêNt ∈ NH̄t
, where1 6 H̄t 6 H, we then define

N̂H̄t,t as the set containing all thēHt nodes having the longest queue in each of theH̄t subsetsNh,

∀h = 1, 2, . . . .H̄t at the tth moment. More explicitly, we havêNH̄t,t = {N̂H̄t,t, . . . , N̂2,t, N̂1,t}, with N̂h,t

representing the node having the longest queue among all thenodes in setNh at thetth time slot.

1) Five Lemmas and One Corollary:

Lemma 1: Given a nodeNh,T ∈ Nh, with h = 2, 3 . . . , H, and an arbitrary neighbor of it inNh−1

denoted asNh−1,R, if at the (t + 1)th time slot no single-hop link is activated, which takesNh,T as the

transmitter andNh−1,R as the receiver, then the node-pair(Nh,T, Nh−1,R) can only fall in one of the following

four statuses, corresponding to the conditions to fulfil Lemmas 2 to 5 respectively.

Proof of Lemma 1: When considered as a potential transmitter during the(t + 1)th time slot,Nh,T

has only three possible statuses, which can be defined as:ST,1 = { Nh,T transmits a packet toNh−1,R};

ST,2 = { Nh,T transmits a packet, but not toNh−1,R}; ST,3 = { Nh,T does not transmit any packets}. ST can

be defined as the set containing all three elements, namelyST = {ST,1, ST,2 andST,3}.
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Similarly, under the consideration of being a potential receiver during the(t + 1)th time slot,Nh−1,R

has only three possible statuses, which can be defined as:SR,1 = { Nh−1,R receives a packet fromNh,T};

SR,2 = { Nh−1,R receives a packet, but not fromNh,T}; SR,3 = { Nh−1,R does not receive any packets}. The

set of these three elements can be written asSR = {SR,1, SR,2 andSR,3}.

Ergo, there are nine ways to choose one element from each set of ST andSR as|ST|× |SR| = 9. Among

the nine distinct combinations, the following four combinations are illogical:(ST,1, SR,2), (ST,1, SR,3),

(ST,2, SR,1), (ST,3, SR,1).

We define the set containing all the logical combinations asP = {(ST,1, SR,1), (ST,2, SR,2), (ST,2, SR,3),

(ST,3, SR,2), (ST,3, SR,2)}. P can be further divided into two subsets:P1 and P̄1, whereP1 denotes the

scenario when a packet is delivered fromNh,T to Nh−1,R. P̄1 is the complement ofP1 andP̄1 = {(ST,2, SR,2),

(ST,2, SR,3), (ST,3, SR,2), (ST,3, SR,2)}. As can be easily observed, the four elements ofP̄1, correspond to

the conditions for fulfilling Lemma 2 to Lemma 5 respectively.

Lemma 2: If Node Nh,T is the transmitterT1 of a receiverR1 ∈ Nh∪Nh+1 and NodeNh−1,R is the

receiverR2 of another transmitterT2 ∈ Nh−1∪Nh∪Nh+1 at the (t + 1)th time slot; then the sufficient

condition for satisfyingQ(T2, t) > Q(R1, t) is thatNh,T = T1 = N̂h,t.

Proof of Lemma 2: The basic assumption for Lemma 2 to be verified lies in that:T1 = Nh,T ∈ Nh,

R1 ∈ Nh ∪ Nh+1, T2 ∈ Nh ∪ Nh−1 ∪ Nh−2, R2 = Nh−1,R ∈ Nh−1. Furthermore, the set satisfying the above

condition can be further divided into two sub-cases, namelyCase I and Case II.

Case I:T2 ∈ Nh−1, R1 ∈ Nh andR1 is within the single-hop range ofT2; as shown in Fig. 2.

Under this circumstance, a link betweenT2 andR1 could be established, but is not activated at the end.

The reason is that the sum of the metrics of the two linksT2 → R2 andT1 → R1 that are finally activated

is bigger than the sum of the metrics of the two linksT1 → R2 andT2 → R1 that are not activated. More

quantitatively, if the link is fromT2 to R1, we will haveα[Q(T1, t)−Q(R2, t)] + γ[Q(T2, t)−Q(R1, t)] <

β[Q(T2, t) − Q(R2, t)] + β[Q(T1, t) − Q(R1, t)]. Otherwise, if the link is fromR1 to T2, we will have

α[Q(T1, t)−Q(R2, t)]+α[Q(R1, t)−Q(T2, t)] < β[Q(T2, t)−Q(R2, t)]+β[Q(T1, t)−Q(R1, t)]. Below we

will show that both equations will lead toQ(T2, t) > Q(R1, t).

a) When the other non-activated link is fromT2 ∈ Nh−1 to R1 ∈ Nh, we haveα[Q(T1, t)−Q(R2, t)] +

γ[Q(T2, t)−Q(R1, t)] < β[Q(T2, t)−Q(R2, t)]+β[Q(T1, t)−Q(R1, t)]. Since we haveQ(T1, t) > Q(R2, t)

andα > β > γ, we can then write0 < (α − β)[Q(T1, t) − Q(R2, t)] < (β − γ)[Q(T2, t) − Q(R1, t)] <

Q(T2, t)−Q(R1, t). Finally, we arrive atQ(T2, t) > Q(R1, t).
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b) When the other non-activated link is fromR1 ∈ Nh to T2 ∈ Nh−1, we shall haveα[Q(T1, t) −
Q(R2, t)] + α[Q(R1, t) − Q(T2, t)] < β[Q(T2, t) − Q(R1, t)] + β[Q(T1, t) − Q(R2, t)]. It can be further

derived as:(α−β)[Q(T1, t)−Q(R2, t)] < (α+β)[Q(T2, t)−Q(R1, t)]. Since we haveQ(T1, t) > Q(R2, t)

andα > β, we therefore haveQ(T2, t) > Q(R1, t).

Case II: All the other scenarios match the condition of Lemma 2, but donot satisfy the condition of

Case I.

Under this situation, no single-hop direct link can be established between nodesT2 andR1. According

to the scheduling principle, the superposition of the metrics of the two linksT2 → R2 and T1 → R1

that are finally activated is bigger than the metric of the non-activated linkT1 → R2. For the sake of

simplicity, in the scope of proof of Lemma 2 we use another variableη1 to alternatively denoteα, β or γ.

Similarly, we use another variableη2 to alternatively represent eitherβ or γ. More quantitatively, we will

haveα[Q(T1, t)− Q(R2, t)] < η1[Q(T2, t)−Q(R2, t)] + η2[Q(T1, t)− Q(R1, t)], whereη1 ∈ {α, β, γ} and

η2 ∈ {β, γ}. Below we will prove the validation ofQ(T2, t) > Q(R1, t) under the following two scenarios.

a) Whenη1 = α corresponding toT2 ∈ Nh

According to the OF addressed in (2), we will always haveα[Q(T1, t) − Q(R2, t)] < α[Q(T2, t) −
Q(R2, t)]+β[Q(T1, t)−Q(R1, t)]. Hence, we arrive at(α−β)[Q(T1, t)−Q(T2, t)] < β[Q(T2, t)−Q(R1, t)].

Sinceα > β, the sufficient condition forQ(T2, t)−Q(R1, t) > 0 is Q(T1, t) > Q(T2, t). Ultimately, when

T1 andT2 ∈ Nh, the sufficient condition of validatingNh,T = Q(T1, t) > Q(T2, t) is

Nh,T = T1 = N̂h. (20)

b) Whenη1 ∈ {β, γ} corresponding toT2 ∈ {Nh−1 ∪ Nh−2}
According to the OF addressed in (2), we will always haveα[Q(T1, t) − Q(R2, t)] < η1[Q(T2, t) −

Q(R2, t)]+η2[Q(T1, t)−Q(R1, t)] < β[Q(T2, t)−Q(R2, t)]+β[Q(T1, t)−Q(R1, t)]. Similarly, the relationship

(α − β)[Q(T1, t) − Q(R2, t)] < βQ(T2, t) − βQ(R1, t) follows. Considering thatQ(T1, t) > Q(R2, t) and

α > β, we will finally arrive atQ(T2, t) > Q(R1, t). Hence (20) would be the sufficient condition to

achieveQ(T2, t) > Q(R1, t), which ultimately demonstrates Lemma 2.

Lemma 3: If Node Nh,T is the transmitterT1 of a receiverR1 = R(Nh,T) ∈Nh∪Nh+1 and NodeNh−1,R is

not receiving at the(t+ 1)th time slot; thenQ(Nh−1,R, t) > Q(R1, t).

Proof of Lemma 3: NodeNh,T ∈ Nh will transmit data to another receiverR1 either belonging toNh

or Nh+1, but notNh−1,R during the(t + 1)th time slot. Hence the difference of hop-count related metrics

between the transmitter and the receiver of the linkNh,T → R1 activated during the(t+ 1)th time slot can

only beβ or γ. For the sake of expression brevity, in the scope of proof of Lemma 3, we use another
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variableη to alternatively denote eitherβ or γ. On this basis, we will haveη[Q(Nh,T, t) − Q(R1, t)] >

α[Q(Nh,T, t)−Q(Nh−1,R, t)], whereη ∈ {β, γ}. Sinceα > β > γ, we will haveα[Q(Nh,T, t)−Q(R1, t)] >

η[Q(Nh,T, t)−Q(R1, t)] > α[Q(Nh,T, t)−Q(Nh−1,R, t)]. Thus,Q(Nh,T, t)−Q(R1, t) > Q(Nh,T, t)−Q(Nh−1,R, t),

whereQ(R1, t) < Q(Nh−1,R, t) can be readily obtained.

Lemma 4: If Node Nh,T is not transmitting and NodeNh−1,R is the receiverR2 of another transmitter

T2 ∈ Nh−2∪Nh−1∪Nh during the(t+ 1)th time slot; thenQ(T2, t) > Q(Nh,T, t).

Proof of Lemma 4: Given R2 ∈ Nh−1 as the receiving node,T2 can only be included in one

of the three sets:Nh, Nh−1 andNh−2. According to the algorithm quantified by the objective function

(OF) (2), we will haveη
[

Q(T2, t)−Q(R2, t)
]

> α
[

Q(Nh,T, t)−Q(R2, t)
]

, whereη ∈ {α, β, γ}. Therefore,

we will have α
[

Q(T2, t) − Q(R2, t)
]

> η
[

Q(T2, t) − Q(R2, t)
]

> α
[

Q(Nh,T, t) − Q(R2, t)
]

, and finally

Q(T2, t) > Q(Nh,T, t) follows.

Lemma 5: If Node Nh,T is not transmitting and NodeNh−1,R is not receiving at the(t+ 1)th time slot;

thenQ(Nh−1,R, t) > Q(Nh,T, t).

Proof of Lemma 5: According to the scheduling policy described in Section III, the only circumstance

that satisfies the condition of Lemma 5 is thatQ(Nh−1,T, t) − Q(Nh,R, t) < 0, namely Q(Nh,T, t) <

Q(Nh−1,R, t).

Corollary 1: If Node Nh,T is not transmitting and NodeNh−1,R is not receiving at the(t+1)th time slot

andNh,T = N̂h,t; thenQ(N̂h−1,t, t) > Q(Nh−1,R, t) > Q(N̂h,t, t).

The proof of Corollary 1 is omitted for the sake of brevity, asit can be readily achieved given Lemma 5.

2) Queue-Length Theorem:

Theorem 2: For any given activation vectore(t+1) determined at thetth moment, we can always find

Mt+1 links (Li,t+1 = Ti,t+1 → Ri,t+1, i = 1, . . . ,Mt+1) so that the first link starts from transmitter node

N̂t, the last link isLMt+1,t+1 = TMt+1,t+1 → Ġ, with Ġ being the closest gateway toTMt+1,t+1 and

∆̄i,t+1 = −Q(Ri,t+1, t) +Q(Ti+1,t+1, t) > 0. (21)

is achieved for alli = 1, . . . ,Mt+1 − 1.

Proof of Theorem 2: We will prove (21) by demonstrating the two propositions (Propositions 1

and 2) with mathematical induction starting fromh = H̄t to h = 1 with an incremental step of−1.

Proposition 1: Whenh = H̄t, we will haveT1,t+1 = N̂t andQ(R1,t+1, t) 6 Q(N̂H̄t−1,t, t).

Proof: Whenh = H̄t, according to the policy,̂Nt must be the transmitter ofL1,t+1. Suppose an arbitrary

neighbor ofN̂t in setNH̄t−1,t is NH̄t−1,R. a) If the receiverR1,t+1 ∈ NH̄t−1, we will haveQ(R1,t+1, t) 6
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Q(N̂H̄t−1,t, t) naturally. b) if the receiverR1,t+1 ∈ NH̄t
∪NH̄t+1, the condition of Lemma 3 is satisfied, we

will have Q(NH̄t−1,R, t) > Q(R1,t+1, t), hence we haveQ(R1,t+1, t) < Q(NH̄t−1,R, t) 6 Q(N̂H̄t−1,t, t).

Proposition 2: Whenh = ḣ, with ḣ = H̄t− 1, H̄t− 2, . . . , 2, we assume thatm links have been found

hence (21) was valid for alli = 1, . . . , m− 1. If

Q(Rm−1,t+1, t) 6 Q(N̂h,t, t), (22)

firstly we will locate∆m (∆m ∈ {0, 1, 2}) number of extra links and if∆m > 0 we will prove (21) is

achieved withi = m, . . . ,m+∆m− 1. Secondly we will arrive atQ(Rm+∆m,t+1, t) 6 Q(N̂h−1,t, t).

Proof: Regardless of the value ofe(t+1), for the nodêNh,t with anyh ∈ {H̄t−1, H̄t−2, . . . , 2}, the

joint scenarios of whether it is a transmitter and whether any of its neighborsNh−1,R ∈ Nh−1 is a receiver

can only fall into one of the five cases below:

a If ∆m = 1, Tm+1,t+1 = N̂h,t, Rm+1,t+1 = Nh−1,R, we haveQ(Rm+∆m,t+1, t) 6 Q(N̂h−1,t, t). According

to (22), we also havē∆m,t+1 > 0.

b If ∆m = 1, Tm+1,t+1 = N̂h,t, Rm+1,t+1 6= Nh−1,R, the condition of Lemma 3 is satisfied. According

to (22), ∆̄m,t+1 > 0 follows, According to the conclusion of Lemma 3 we will haveQ(Rm+∆m,t+1, t) <

Q(Nh−1,R, t) 6 Q(N̂h−1,t, t).

c If ∆m = 2, Tm+1,t+1 = N̂h,t and Rm+2,t+1 = Nh−1,R, the condition of Lemma 2 is satisfied. Based

on (22), ∆̄m,t+1 > 0 follows. According to the conclusion of Lemma 2, we haveQ(Rm+1,t+1, t) <

Q(Tm+2,t+1, t), which leads to∆̄m+1,t+1 > 0. As Rm+2,t+1 = Nh−1,R ∈ Nh−1 we haveQ(Rm+∆m,t+1, t) 6

Q(N̂h−1,t, t).

d If ∆m = 1, Tm+1,t+1 6= N̂h,t andRm+1,t+1 = Nh−1,R the condition of Lemma 4 is satisfied. Based on

(22), we immediately haveQ(Rm+∆m,t+1, t) 6 Q(N̂h−1,t, t). According to the conclusion of Lemma 4, we

haveQ(Tm+1,t+1, t) > Q(N̂h,t, t), hence∆̄m+1,t+1 > 0 follows.

e If ∆m = 0, the condition of Lemmas 5 and 1 is satisfied. According to theconclusion of Lemmas 5

and (22),Q(N̂h−1,t, t) > Q(N̂h,t, t) follows.

According to Proposition 1 and Proposition 2 we may prove that (21) is achieved fori = 1, . . . ,Mt+1−2.

As the bandwidth of the gateway is much wider than the ordinary mesh node in the network,̂N1(t) must

be the transmitter of theM th
t+1 link, which leads toLMt+1

= TMt+1
→ Ġ. Based on (22) withm = Mt+1

andh = 1, ∆̄Mt+1
> 0 follows. So far, we have proved that (21) is valid fori = 1, . . . ,Mt+1 − 1. Thus,

Theorem 2 is proved.

3) Queue-Length Corollary:

Corollary 2: If Theorem 2 is achieved, we will havedT (t)e(t+ 1) > Q(N̂t, t).
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Proof of Corollary 2: According to Theorem 2, we will haveQ(T1,t+1, t)− Q(R1,t+1, t) + Q(T2,t+1, t)

− Q(R2,t+1, t) + · · ·+Q(TMt+1−1,t+1, t)− Q(RMt+1−1,t+1, t) +Q(TMt+1
, t) = Q(T1,t+1, t) +

∑Mt+1

i=1 ∆̄i,t+1 >

Q(T1,t+1, t) = Q(N̂t, t). If we denote the set containing all the single-hop direct links that will be activated

during the next time slot asLA,t+1 and further denote the subset ofLA,t+1 that contains all the links

included in Theorem 2 aŝLA,t+1 and the subset containing the rest of elements asL̄A,t+1 = LA,t+1−L̂A,t+1,

dT (t)e(t+1) can be alternatively rewritten as:dT (t)e(t+1) =
∑

Li∈LA,t+1
d(Li, t) =

∑

Li∈L̂A,t+1
d(Li, t) +

∑

Li∈L̄A,t+1
d(Li, t). According to the scheduling algorithm given in Section III, for each activated link, the

queue length of the transmitter is always bigger or equal to that of the receiver. In this case we will have
∑

Li∈L̄A,t+1
d(Li, t) > 0. Hence,dT (t)e(t + 1) =

∑

Li∈L̂A,t+1
d(Li, t) +

∑

Li∈L̄A,t+1
d(Li, t) > Q(N̂t, t) + 0 =

Q(N̂t, t) can be proved.

B. Proof of the Network Stability Under Stability Region

Proof of Theorem 1: Let’s assume that the arrival rate vectorȧ at any moment is Poisson distributed

with a mean and variance ofρa. Following the statement given in Section III-D, given a positive numberǫ,

as long asa(t+1) belongs to the stability regionC and we can find a positive numberbq as a multi-variable

function of ǫ andρa, such that

E
[

qT (t + 1)q(t+ 1)− qT (t)q(t)
∣

∣

∣
q(t) = q̇

]

< ∞ if q̇T q̇ 6 bq (23)

E
[

qT (t + 1)q(t+ 1)− qT (t)q(t)
∣

∣

∣
q(t) = q̇

]

6 −ǫ if q̇T q̇ > bq (24)

are both able to be achieved, then the mesh network is considered to be stable.

As can be observed from (23) and (24), under both situations,we need to calculate the value of the

common componentE
{

qT (t + 1)q(t + 1) − qT (t)q(t)
}

shared by both inequations. Given the current

queue length vectorq(t), the queue length vector of the next time slot can be quantified asq(t + 1) =

q(t) +Re(t+ 1) + a(t+ 1). Hence, the common part of both equations can be further expressed as:

E
{

qT (t+ 1)q(t + 1)− qT (t)q(t)
}

= E
{

[

q(t + 1) + q(t)
]T [

q(t+ 1)− q(t)
]

}

=E
{

[

2q(t) +Re(t+ 1) + a(t+ 1)
]T [

Re(t+ 1) + a(t + 1)
]

}

=2E
{

qT (t)
[

Re(t+ 1) + a(t + 1)
]

}

+ E
{

[

Re(t+ 1) + a(t + 1)
]T [

Re(t+ 1) + a(t + 1)
]

}

, (25)

wherea(t+1) is an instantaneous sample of theN-dimensional vector-valued random variableaN . Each

element ofaN is an independent and identically distributed (i.i.d.) random variablea, which follows a

Poisson distribution. So if its mean isE(a) = ρa, the variance is also going to be var(a) = E
{

[a −
E(a)]2

}

= ρa, which leads toE(a2) = ρa(ρa + 1).
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Thus, the second item of (25) can be further derived as:E
{

[

Re(t + 1) + a(t + 1)
]T [

Re(t + 1) +

a(t+1)
]

}

=
∑N

n=1E
{

[

rn(R)e(t+1)
]2
}

+2
∑N

n=1E
{

[

rn(R)e(t+1)
]

an(t+1)
}

+
∑N

n=1E
{

a2n(t+1)
}

,

wherern(R) is thenth row vector of the(N × L)-element routing matrixR and an(t + 1) is thenth

element of the(N × 1)-element arriving rate vectora(t + 1). Obviously, the scalar
[

rn(R)e(t + 1)
]

is

upper bounded by the number of single-hop direct links connected to Nn. More precisely, even if all

the L single-hop links existing in the mesh network are connectedto Nn, and all of them are activated,
[

rn(R)e(t+1)
]

= L. Hence, we will have
[

rn(R)e(t+1)
]

6 L, ∀n = 1, . . . , N . Subsequently, we will

have
∑N

n=1

[

rn(R)e(t+ 1)
]2

6 NL2. Therefore, the second term of (25) can be further improved as:

E
{

[

Re(t+ 1) + a(t + 1)
]T [

Re(t+ 1) + a(t+ 1)
]

}

6NL2 + 2L
N
∑

n=1

E
[

an(t+ 1)
]

+
N
∑

n=1

E
[

a2n(t+ 1)
]

6 NL2 + 2LNρa +Nρa(ρa + 1) (26)

For the first term of the right hand side (RHS) of (25), we have the following:

2E
{

qT (t)
[

Re(t+ 1) + a(t + 1)
]

}

= 2E
{

qT (t)Re(t+ 1)
}

+ 2E
{

qT (t)
}

E
{

a(t+ 1)
}

, (27)

whereqT (t)R is a(1×L)-element vector, and itslth element corresponds toqT (t)cl(R) = −Q
[

T(Ll)
]

(t)+

Q
[

R(Ll)
]

(t) = −d(Ll, t), wherecl(R) stands for thelth column of the(N × L)-element routing matrix

R. Therefore, we have

qT (t)R = −dT (t). (28)

Below, we will prove (23) and (24) in Sections B1 and B2 respectively.

1) whenq̇T q̇ 6 bq: we will prove (23). Firstly, we define the superposition of all the elements in an

instantaneous vectoṙq asΣq̇ and the expectation of the superposition of all elements inq(t) asE{Σq(t)}
respectively. We further assume that the number of nodesN is bigger than one, which is always the case

in a network. WhenΣq̇ > N , we will always haveΣq̇/
√
N 6

√

q̇T q̇. Hence, we haveE{Σq(t)}/
√
N 6

√

E{qT (t)q(t)} 6
√

bq, which leads toE{Σq(t)} 6
√

Nbq. When Σq̇ 6 N and bq > N , we have

E{Σq(t)} 6 N 6
√

Nbq. WhenΣq 6 N and bq 6 N , we haveE{Σq(t)} 6 N . We can always find a

maximum limitΣ̂q̇, which is either
√

Nbq or N , for the value ofE{Σq(t)}. Therefore, the first and second

term of (27) can be further derived as:2E
[

qT (t)Re(t+1)
]

6 2LΣ̂q̇ and2E
[

qT (t)
]

E
[

a(t+1)
]

6 2ρaΣ̂q̇.

Based on the above discussions, we will haveE
[

qT (t + 1)q(t + 1) − qT (t)q(t)
]

6 2LΣ̂q̇ + 2ρaΣ̂q̇

+NL2 + 2LNρa +Nρa(ρa + 1) < ∞. Hence (23) is proved.
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2) whenq̇T q̇ > bq,: we will prove (24). Whenq̇T q̇ > bq, we will have
∑N

n=1 q̇
2
n > bq. Therefore,

the maximum elementmaxNn=1 q̇n of vector q̇ satisfies the following relationshipmaxNn=1 q̇n >
√

bq/
√
N .

According to Theorem 2, the following relationship can be further obtained:

dT (t)e(t+ 1) >Q(N̂t, t) =
N

max
n=1

q̇n >

√

bq

N
. (29)

As long asa(t + 1) is under the stability region, it can be represented by relationship (3). Additionally,

in (3) the flow vectorf ∈ co(S). According to the definition of the convex hull, iff ∈ co(S), f should

satisfy the following relationship:

f 6

|S|
∑

i=1

θisi, (30)

subject to
∑|S|

i=1 θi = 1. Hence, we can find aδ > 1, such that

f =
1

δ

|S|
∑

i=1

θisi =

|S|
∑

i=1

λisi, (31)

whereλi = θi/δ and
∑|S|

i=1 λi 6 1. By replacing the arrival rate vectora(t + 1) with (3) as well as (31),

and by employing (28), the second term at the RHS of (27) can beexpanded as:

E
{

qT (t)
}

E
{

a(t + 1)
}

= − 1

α
E
{

qT (t)
}

RD̄f =
1

α
E
{

dT (t)
}

D̄

|S|
∑

i=1

λisi (32)

As the activation vectore(t + 1) = argmaxsi∈S d
T (t)D̄si, ergo we havedT (t)D̄si 6 dT (t)D̄e(t + 1)

achieved for allsi ∈ S. Therefore, (27) can be further developed as:

2E
{

qT (t)
[

Re(t+ 1) + a(t + 1)
]

}

6− 2(1− 1

α

|S|
∑

i=1

λi)E
[

dT (t)e(t+ 1)
]

6 −2(1− 1

α

|S|
∑

i=1

λi)

√

bq

N
. (33)

Finally, by substituting the first and the second item of (25)with (33) and (26), we will have

E
{

qT (t+ 1)q(t+ 1)− qT (t)q(t)
}

6 −2(1− 1

α

|S|
∑

i=1

λi)

√

bq

N
+NL2 + 2LNρa +Nρa(ρa + 1). (34)

According to (24), whenqT (t)q(t) > bq, the condition for the network to be stable is the existence of a

positive numberǫ so thatE
[

qT (t+1)q(t+1)−qT (t)q(t)
]

6 −ǫ is always achieved. According to (34),

if we wantE
[

qT (t+1)q(t+1)−qT (t)q(t)
]

6 −ǫ to be achieved all the time, we should find a positive

value for the queue-length boundarybq to validate

−2(1 − 1

α

|S|
∑

i=1

λi)

√

bq

N
+NL2 + 2LNρa +Nρa(ρa + 1) = −ǫ. (35)
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As we have1− 1

α

∑|S|
i=1 λi > 0 achieved for allα > 1, a positive value ofbq can be easily obtained from

(35) as

bq = N







NL2 + 2LNρa +Nρa(ρa + 1) + ǫ

2(1− 1

α

∑|S|
i=1 λi)







2

. (36)

Given a positive numberǫ, a correspondingbq can be evaluated; such that as long as the arrival rate

vector a(t + 1) is under the stability region even when the norm of the queue length of all the mesh

network is bigger than the boundary, i.e.qT (t)q(t) > bq, the network is still going to be stable since

E
[

qT (t+ 1)q(t+ 1)− qT (t)q(t)
]

< −ǫ is always achieved.
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Fig. 1: An example of a multiple-path network structure consistingof G gateways (G1, G2, . . ., GG).
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Fig. 2: Case I of the scenarios satisfying the assumption of Lemma 2.
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Fig. 3: Performance evaluation of the three-gateway network operating with back-pressure algorithm using a set of beacon

interval values.
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Fig. 4: Performance evaluation of the four-gateway network operating both with and without using back-pressure algorithm.
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Fig. 5: Average end-to-end delay of the four-gateway network operating both with and without using back-pressure algorithm.


