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Abstract

The throughput of a communication system serving bursty multimedia traffic can be characterized by the admission region: all possible sets of multimedia sources the system can accommodate given the sources statistical characteristics and Quality of Service (
[image: image1.wmf]QoS

) requirements.  Since throughput depends on the system resources (bandwidth and buffering space) as well as the resource management strategies, it is natural to define the system capacity as the upper limit on the admission region over all physically feasible strategies.  This paper estimates the capacity of a buffered communication channel serving multimedia traffic with 
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 requirements on the maximum allowable traffic delay and loss.  The buffer is assumed large enough to make the channel capacity the limiting resource.  Given the set of multimedia sources within the system capacity, the paper also discusses the scheduling disciplines that provide the required 
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.

1. Introduction

Emerging multimedia networks will statistically multiplex bursty multimedia traffic sources with vastly different statistical characteristics and Quality of Service (
[image: image4.wmf]QoS

) requirements.  In presence of multimedia traffic, different classes of resource (bandwidth and buffer space) management strategies can be compared on the basis of the admission region.  The admission region represents all possible sets of multimedia sources the system can accommodate with the corresponding strategies, given the system resources, and 
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 requirements.  We consider a single buffered communication channel serving multimedia traffic with 
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 requirements on maximum allowable cell loss probability and delay.  Due to limited paper space we assume that the buffer is large enough to make the channel capacity (not the buffering space) the limiting resource.  This situation is typical for wireless communication.  We assume that 
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 Classes of Service (
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) are statistically multiplexed through a large buffer on a communication link with a constant bit rate 
[image: image9.wmf]C

.  
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 identical sources with the following 
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 are the traffic loss probability and delay respectively.  Given the scheduling discipline 
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 and 
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 requirements (1), the admission region 
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 the system can accommodate.  We assume the buffer management strategy which accepts all arriving traffic into the buffer and drops a cell of class 
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 from the buffer once the cell current delay exceeds the limit 
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 to prevent wasting the channel capacity on an outdated traffic.  Obviously, this buffer management strategy is optimal in terms of maximizing the admission region for a sufficiently large buffer but can be improved for small buffers. 

It is natural to define the system capacity region as the upper limit of the admission region 
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Assuming that the statistical properties of the sources are known, the paper approximates the capacity region (2) as a function of the channel bit rate 
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 and 
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 requirements (1):         
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.  The paper also discusses scheduling disciplines 
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 which closely approach the capacity region (1).  We consider the following large deviations asymptotic regime: 
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.  It is known [1] that under this regime the statistical properties of the sources can be characterized by the effective bandwidths:
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is the amount of traffic generated by a source 
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The paper is organized as follows. Section 2 conjectures the distributional version of the Little theorem.  Section 3 approximates the capacity region in a case of uniform loss and 
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 specific delay requirements: 
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.  Section 4 approximate the capacity region in a case of 
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 (1).  Finally, section 5 illustrates our results in a case of 
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 classes of service and Brownian traffic sources.  

2. The Conservation Laws 

In a case of uniform 
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 can be realized with the First In First Out (
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) scheduling.  It is known [1] that the boundary of this region 
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where a parameter 
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 can be justifiably called the effective rate of a source of class 
[image: image62.wmf]j

.  The effective rates  
[image: image63.wmf])

,

,

(

K

T

e

j

g

 depend on the traffic mixture 
[image: image64.wmf]K

 and can be calculated if the effective bandwidths (3) are known [1].   

Consider a system that statistically multiplexes a traffic mixture 
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 through an infinite buffer. Assuming that scheduling discipline treats all sources of the same class equally, let 
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we conjecture the following inequality:
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for any scheduling discipline.  This inequality can be interpreted as a distributional version of the Little theorem [4].  If 
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.  Inequality (6) also holds if the traffic mixture includes only identical sources.  In this particular case equality in (6) can be realized with the First In First Out (
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) scheduling discipline.  There is a number of arguments which can be put forward to suggest that (6) holds (at least approximately) in a general case and the boundaries in (6) can be closely approached for all 
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We will use (5)-(6) to derive upper bounds on the capacity region under the large deviations asymptotic regime when 
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3. The Capacity Region for Uniform Losses

Combining (4) with (7) we obtain the following system:
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for any  subset 
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upper bounds the attainable 
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Consider a case of uniform loss and service specific delay requirements: 
[image: image111.wmf]max

L

L

j

£

, 
[image: image112.wmf]max

j

j

d

d

£

, 
[image: image113.wmf]J

j

,..,

1

=

.  Without loss of generality assume the 
[image: image114.wmf]CoS

 are arranged according to the stringency of the 
[image: image115.wmf]QoS

 requirements:  
[image: image116.wmf]max

max

2

max

1

..

J

d

d

d

£

£

£

.  All traffic mixtures 
[image: image117.wmf]K

 for which the attainable 
[image: image118.wmf]QoS

 region (8)-(9)  contains the 
[image: image119.wmf]QoS

 parameters 
[image: image120.wmf]max

L

L

i

=

, 
[image: image121.wmf]max

i

i

d

d

=

, 
[image: image122.wmf]}

,..,

1

{

j

i

Î

 form the following region: 
[image: image123.wmf]}

)

,..,

,

,

(

{

1

max

C

K

K

T

e

K

K

U

j

j

i

j

i

i

i

j

£

=

å

£

g

 where 
[image: image124.wmf])

,..,

(

1

j

j

j

K

K

T

T

=

  is the solution to the following fixed point equation:      
[image: image125.wmf]å

£

=

j

i

j

j

i

i

i

j

K

K

T

e

d

K

C

T

)

,..,

,

,

(

1

1

max

max

g

. Regions 
[image: image126.wmf]j

U

, and, consequently, their intersection
[image: image127.wmf]
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Upper bound (10) is obtained by considering the attainable 
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and that the capacity region (11) can be closely approached with the 
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4. The Capacity Region in a General Case 
First, consider a "homogeneous "case when the traffic mixture consists only of sources of the same class 
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Equation (12) describes the trade-off between the 
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We expect that for Brownian sources approximation (14) is in fact an identity and for general traffic sources (14) closely approximates the capacity region.  We also expect that for Brownian (arbitrary) sources the capacity region can be realized (closely approached) with the scheduling discipline 
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.  This approximation is consistent with theoretical and simulation results for specific scheduling disciplines [6]-[7].

5. Example: Two Classes of Service, Brownian Traffic Sources
  As an example consider a case of 
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Figure 1: Schematic view of the capacity region in a case of two classes of service.
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