
M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP: Architecture,
Implementation, Testing

M. Ranganathan
mranga@nist.gov

Advanced Networking Technologies Division
http://w3.antd.nist.gov

National Institute of Standards and Techology
http://www.nist.gov

Gaithersrburg, MD 20899.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Speaker Introduction

• Speaker affiliation:
– NIST: National Institute of Standards and

Technology.
• ANTD: Advanced Networking Technologies Division.

– Not a member of JAIN-SIP expert group.

• Our interests are:
– Applied Networking Research, Standards, Testing

• Architect and main developer of NIST-SIP: public
domain JAIN-SIP Java SIP Stack.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Talk Outline

• Brief overview
• The function of JAIN SIP (why use it)
• JAIN architecture preliminaries
• JAIN-SIP abstractions and what they do
• Services provided by the JAIN stack
• Application responsibilities
• A skeleton application

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Talk Outline (Contd.)

• Parsing SIP headers
• Wrapping a JAIN implementation around a

SIP stack
• Testing the implementation

– The TCK
– Other useful test tools

• Loose ends and ideas for future spec

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN Architecture

• JAIN Provides an event-layer abstraction
for applications.

ApplicationJAIN Events

JAIN Layer

Protocol Stack
Proprietary
Primitives

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Overview: JAIN-SIP

• JAVA-Standard interface to a SIP Signaling
Stack. Spec Lead: Chris Harris,
DynamicSoft charris@dynamicsoft.com

• Wraps the low-level stack and protocol
abstractions in a JAVA interface layer

• Allows a JAVA application/servlet or bean
to imbed a SIP stack and access low level
functions

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Overview: JAIN SIP (Contd.)

• Simplifies the construction of SIP components:
– User Agents, Proxy Servers, Presence Servers.

• JAIN SIP can be utilized in a User Agent or
Proxy

• Holy Grail: Application portability between JAIN
SIP stacks via definition of interfaces and run-time
behavior. Ensure interoperability via the TCK.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Application Portability

• How does JAIN-SIP aim to achieve
application portability between JAIN-SIP
compliant stacks?
– Standardize the interface to the stack.
– Standardize the events and event semantics.
– Standardize transactional semantics.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Architecture

Listeners

Provider

Listeners

SIP Messages Events SIP Messages Events

Provider

Stack Stack
Network

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Responsibilities the Application
• Application MUST go through the provider

for all interactions with the stack (no direct
access to the wire protocols).

• Application registers an implementation of
the SipListener interface with the stack.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Responsibilities the Application
(Cont.)

• Application sees all signaling traffic and is
responsible for sending responses via the
SipProvider.

• Application is responsible for
retransmission processing on timeout for
stateless implementation.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Responsibilities of the Stack

• Provide methods to format and send SIP messages
• Parse incoming sip messages and allow

application to access / modify fields through a
standardized JAVA interfaces

• Invoke appropriate application handlers when
protocol significant events occur

• Provide transaction support
• Manage transactions on behalf of a user

application

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Packages

• jain.protocol.ip.sip
– Stack, provider and other packages.

• jain.protocol.ip.sip.header:
– Header factories, interfaces for each supported header.

• jain.protocol.ip.sip.message
– Message factories : Create messages for sending out.

• jain.protocol.ip.sip.address
– Address factories: Parse and create URL and address

objects.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Abstractions

• jain.protocol.ip.sip.SipFactory:
– Creates the main Stack object.

• jain.protocol.ip.sip.SipStack
– Event generator: Fields incoming messages and

generates events.
– Transaction handler: Manages transactions and

generates transaction timeout events.
Transaction objects are not directly accessible
by the application.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Abstractions (Contd.)

• jain.protocol.ip.sip.ListeningPoint:
– Corresponds to a Stack Address (UDP/TCP) – IP

address and port from which the stack can receive and
send messages.

– The stack is configured with one or more listening
points.

• jain.protocol.ip.sip.Provider
– Provides helper facilities for the application program

(sendRequest, sendResponse, sendAck…)

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

The SipListener Interface

JAIN-SIP Application programs must implement the
jain.protocol.ip.sip.SipListener interface

public interface SipListener extends java.util.EventListener
{
public void processResponse(SipEvent responseReceivedEvent);
public void processRequest(SipEvent requestReceivedEvent);
public void processTimeOut(SipEvent transactionTimeoutEvent);
}

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Application Skeleton

Create a SipFactory object instance

sipFactory = SipFactory.getInstance();
sipFactory.setPathName("gov.nist");

Create a SIP Stack instance

try {
sipStack = sipFactory.createSipStack();

} catch(SipPeerUnavailableException e) {
System.exit(-1);

} catch(SipException e) {
System.exit(-1);

}

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Application Skeleton
(Contd.)

Create factories to format headers and send messages

HeaderFactory headerFactory =
sipFactory.createHeaderFactory();
AddressFactory addressFactory =

sipFactory.createAddressFactory();
MessageFactory messageFactory =

sipFactory.createMessageFactory();

… format and send off invite message using sendMessage

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Application Skeleton
(Contd.)

Handle incoming messages (delivered as events):

public void processRequest(SipEvent requestReceivedEvent) {
Request request = (Request)requestReceivedEvent.getMessage();
long serverTransactionId = requestReceivedEvent.getTransactionId();
try {

if (request.getMethod().equals(Request.INVITE))
processInvite(request,serverTransactionId);

else if (request.getMethod().equals(Request.ACK))
…..

} catch (SipParseException ex) {
ex.printStackTrace();

}
}

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP Application Skeleton
(Contd.)

Handle Timeout Events
public void processTimeOut(jain.protocol.ip.sip.SipEvent

transactionTimeOutEvent) {
try {
if(transactionTimeOutEvent.isClientTransaction()) {

get the request for this transaction
sipProvider.sendRequest(request);

}
} catch (Exception ex) {

ex.printStackTrace();
}

}

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN Implementation Wrappers

•JAIN API are defined as interfaces.
•Interface implementation is JAVA
•Protocol object can be JAVA/Native

JAIN Object

Native Protocol Object

JAIN methods

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Building a SIP Stack

• Parsing incoming messages.
• Rewriting/responding to messages:

– Generating outgoing messages from incoming
messages.

• Routing outgoing messages:
– Sending them off to the right next hop.

• Transaction handling:
– Matching requests to responses.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Parsing SIP Headers

• The SIP grammar is specified in ABNF
form.

• Grammar is compositional (includes
grammar of other RFCs).
– Introduces some syntactic ambiguities.

• SIP headers can be parsed using a “hand
crafted” parser or by inputting the grammar
to a parser generator.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Parsing SIP Headers (Cont.)

• Parser generators are good for clearly
identifying and dealing with syntactic
ambiguities.

• Parser generators can generate slow and
huge parsers.
• Lots of code means slow class loading.
• May not be good for production SIP stacks.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Parsing SIP Headers (Cont.)

• RFC grammar makes it difficult to directly use
parser generator tools directly.
• Must be able to directly handle ABNF.
• Must be able to cleanly deal with ambiguities.

• A few tools like antlr are suitable:
• Allows closure operations on non-terminals.
• Syntactic and semantic predicates allow systematic

dealing with syntactic ambiguities.
• Grammar composition features.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Eager and Lazy Parsing

• JAIN-SIP allows for either eager or lazy parsing.
• Eager parsing – the entire message is parsed as

soon as it is received.
• Lazy parsing – the headers are parsed as needed

by the application. Can provide performance
advantages.
– When the message is received, text is stored but not

parsed.
– Portions of the message parsed when needed.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Rewriting/Responding to
Messages

• Follow RFC 2543 Rules in generating
Responses to requests.

• These rules are implicit in the JAIN-SIP
Spec/implementation.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Parsing: Error Reporting

• Errors are reported up to the application
using SipParseException.
– Thrown on both set and get methods.
– Allows for lazy or eager parsing.

• SipParseException is supposed to capture
the portion of the header that lead to the
error.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Lazy Parsing

public interface HeaderIterator
{

public boolean hasNext();
public Header next()

throws HeaderParseException,
NoSuchElementException;

}

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Transactions

• SIP transaction consists of a single request
and any responses to that request, which
include zero or more provisional responses
and one or more final responses (from RFC
2543).

• The SIP protocol provides enough state in
the SIP message to extract a transaction
identifier.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Client and Server Transactions

Server transaction

C
lient transaction

C
lient transaction

Server transaction

UASUAC Statefull proxy

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Transactions in JAIN-SIP
• JAIN-SIP identifies transactions by a long integer.
• Transactions are associated with all

sipProvier.sendXXX methods.
• SipListener.processRequest(SipEvent)

SipListener.processResponse(SipEvent)
SipListener.processTimeout(SipEvent)

• The transaction identifier is retrieved from the
SipEvent for the Timeout Event.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

INVITE Transaction (RFC 2543)

Calling

Proceeding

Completed

Terminated

Timer B fires
OR Transport Err

Invite from TU
Invite Sent
Timer A

2xx to TU

2xx to TU1xx to TU

300-699
ACK sent

300 –699
ACK sent 300-699 ACK Sent

Transport Err

Timer D fires

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Transaction Timeouts

• Stateless implementation:
– The stack generates periodic timeout

notifications for outstanding transactions.
– The application keeps track of the

retransmission state machine.
– Timeouts are delivered to the application in an

exponentially decaying fashion.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Transaction Timeouts (Contd.)

• Statefull implementation:
– The stack handles retransmissions.
– Timeout when the transaction does not

complete as expected (longest arc in the
previous diagram).

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Statefull Vs. Stateless

• JAIN-SIP does not specify whether the
implementation should be statefull or
stateless.
– Controversy in mailing list discussions.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Statefull Vs. Stateless (Contd.)

• Statefull implementation:
– Makes it easier to implement user

agents/b2bua/statefull proxy.
– Not suited for stateless proxy servers.

• Stateless implementation:
– Thinner implementation.
– Allows implementation of stateless proxy

servers but puts more burden on
implementation of user agents.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Dealing with Extensibility

• SIP extensibility: can add new request
methods and new headers.

• JAIN-SIP provides support for all the
headers in RFC2543.

• Headers can be created/accessed by name.
• Messages can be created with any method

name (implementation can reject it and
throw a SipParseException if needed).

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

The TCK

• A test suite that is supposed to ensure
interoperability between JAIN
implementations.

• Ideally – if two implementations pass the
TCK then they are plug replace-able.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

JAIN-SIP TCK

• The TCK is a unit test. Can test all the set/get
methods, stack creation, message send/receive and
some transaction processing.

• Does not test timeouts and detailed transactional
semantics.

• Lots of good protocol test tools available to test
your application/implementation.
– NIST responder tool: allows you to test against a call

flow.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Protocol Test Tool
• Flexible framework for..

– Call Flow Generation
– Test Scripts, Error Scenarios

• Scripting Technology
– XML+NIST-

SIP+JAVA/JYTHON
– XML State machine

templates
– Event triggers, responses

specified in XML+JAVA or
XML + JYTHON

– NIST-SIP event engine
drives script and implements
responses.

<!-- Expect an ACK and send a BYE 40 seconds after the ACK.

Note that this includes some imbedded code that triggers when

the ACK arrives. When the transaction complets the onCompletion

attribute specifies the code fragment that runs

-->

<EXPECT

nodeId = "node6"

enablingEvent = "INVITEReceivedOKSent"

triggerMessage = "ACK"

generatedEvent = "ACKReceived"

executeOnTrigger = "onACKReceived"

executeOnCompletion = "onTransactionComplete"

>

<GENERATE

delay = "100"

retransmit = "true"

>

<SIP_REQUEST>

<REQUEST_LINE

method = "BYE"

/>

</SIP_REQUEST>

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

NIST-SIP Protocol Test Tool

Test Proxy

Responder

Responder

JAIN App

Trace Viewer

XML Event Script

XML Event Script

Message Trace

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Responder

XML Specification for Call Flow State Machine

Event Engine

Pattern Matcher

SIP Stack

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Visualizing Multiparty Traces
• Java Applet

collects and
visualizes
distributed call flow
trace files.

• Augmented with
XML script state
information.

• Enables debugging
call flows & test
scripts.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

notifies

launches

Logs
messages

consults

Gets Trace

consults

launchesRMI Registry User
AgentController

XML file describing
the available tests

XML file describing
the available tests

Servlet ServletServlet

Servlet

Proxy

User
Agent

Server Side

Client Side

Protocol:

Port:

Address:

GO

Test 1

Test 4

Test 3

Test 2

GOGO

IP address

Port

Trace
Applet

http://is2.antd.nist.gov:8080/nistwebtester/setup

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Selected Design Issues

• Issues from discussion list (gathered by
Phelim O’Doherty, sun Microsystems).

• Introduce management capabilities for
ListeningPoints

• Including proxies capabilities explicitly in
the API :
– Make the transaction model configurable?

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Selected Design Issues (Contd.)

• sendBye should take a Request or a
Response as argument as it does not
rely on a previous transaction.

• sendAck should not generate a new
transaction.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Loose Ends: Dialogs and Tags

• Dialog: A peer-to-peer relationship between
communicating SIP entities.

• Dialog is identified by to tag, from tag and call id.
• JAIN SIP does not deal directly with dialog

objects.
• Need to deal with legacy issues (JAIN-SIP is

based on RFC 2543 (no bis)). Semantic changes
since the first spec release

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Loose Ends: Statefulness

• Statefull versus stateless implementation?
– Application portability problem (a portable

application has to be written assuming the least
common denominator -- needless complexity).

– What is the correct spec interpretation?
– Better way to define the spec?

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Loose Ends: Stack Configuration

• JAIN does not address stack configuration.
• Configuration parameters include such

things as:
– IP address/port on which the listener will be

configured.
– What transport types the listener will support.
– Proxy address.
– Transaction model (?).

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Consistent Spec Definition
(Some Ideas -- comments solicited)

JAIN
Sip
Lite

JAIN
SIP

SIP
Servlets

XML Tags (State machine spec)

SIP Stack

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Related Specifications

• JSR-164 JAIN-SIMPLE: a set of extensions
made to the SIP protocol to support presence
and instant messaging.

• JSR-125 JAIN-SIP-Lite: is aimed User Agent
application development. Hides the gory
details of the SIP protocol and provides a
high level abstraction for developers of User
Agent (UAC/UAS) software.

• JSR-141 SDP API: Builds a wrapper around a
SDP interface

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Related Specifications

• JSR 21 JAIN Call Control API: Protocol
Independent Call Control. Note that
JAIN-SIP-LITE is UA only and protocol
aware.

• JSR-116 SIP Servlets: HTTP Servlet
like interface for SIP. Primarily for use
on proxy servers.

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Useful URLs
JAIN SIP Specification:
http://jcp.org/jsr/detail/032.jsp

JAIN-SIP Disucssion List:
mailto:JAIN-SIP-INTEREST@java.sun.com

NIST IP-Telephony Project page (NIST-SIP):
http://is2.antd.nist.gov/proj/iptel
Web-based protocol tester (in development):
http://is2.antd.nist.gov:8080/webtester/setup.html

M. Ranganathan SIP Summit, Las Vegas, NV, May 7-9 2002

Acknowledgement

• Chris Harris (DynamicSoft) and the JAIN-
SIP expert group.

• JAIN-SIP interest mailing list.
• SIP-IMPLEMENTORS mailing list.
• Numerous contributors to the NIST-SIP

project from the user community.
• NIST guest researchers: Olivier Deruelle,

Christophe Chazeau, Marc Bednarek.

	JAIN-SIP: Architecture, Implementation, Testing
	Speaker Introduction
	Talk Outline
	Talk Outline (Contd.)
	JAIN Architecture
	Overview: JAIN-SIP
	Overview: JAIN SIP (Contd.)
	Application Portability
	JAIN-SIP Architecture
	Responsibilities the Application
	Responsibilities the Application (Cont.)
	Responsibilities of the Stack
	JAIN-SIP Packages
	JAIN-SIP Abstractions
	JAIN-SIP Abstractions (Contd.)
	The SipListener Interface
	JAIN-SIP Application Skeleton
	JAIN-SIP Application Skeleton (Contd.)
	JAIN-SIP Application Skeleton (Contd.)
	JAIN-SIP Application Skeleton (Contd.)
	JAIN Implementation Wrappers
	Building a SIP Stack
	Parsing SIP Headers
	Parsing SIP Headers (Cont.)
	Parsing SIP Headers (Cont.)
	Eager and Lazy Parsing
	Rewriting/Responding to Messages
	Parsing: Error Reporting
	Lazy Parsing
	Transactions
	Client and Server Transactions
	Transactions in JAIN-SIP
	INVITE Transaction (RFC 2543)
	Transaction Timeouts
	Transaction Timeouts (Contd.)
	Statefull Vs. Stateless
	Statefull Vs. Stateless (Contd.)
	Dealing with Extensibility
	The TCK
	JAIN-SIP TCK
	Protocol Test Tool
	NIST-SIP Protocol Test Tool
	Responder
	Visualizing Multiparty Traces
	Selected Design Issues
	Selected Design Issues (Contd.)
	Loose Ends: Dialogs and Tags
	Loose Ends: Statefulness
	Loose Ends: Stack Configuration
	Consistent Spec Definition (Some Ideas -- comments solicited)
	Related Specifications
	Related Specifications
	Useful URLs
	Acknowledgement

