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ABSTRACT 

In this paper, we present an innovative recursive motion 
estimation technique that can take advantage of the in-depth 
resolution (range) to perform an accurate estimation of 
objects that have undergone 3-D translational and rotational 
movements.  This approach iteratively aims at minimizing 
the error between the object in the current frame and its 
compensated object using estimated motion displacement 
from the previous range measurements. In addition, in order 
to use the range data on the non-rectangular grid in the 
Cartesian coordinate, we consider a combination of 
derivative filters and the transformation between the 
Cartesian coordinates and the sensor-centered coordinates. 
For sequences of moving range images we demonstrate the 
effectiveness of the proposed scheme. 
 

Index Terms— 3-D motion estimation, range image, 
object tracking, Ladar, Laser scanners 
 

1. INTRODUCTION 
Classical motion estimation techniques in computer vision 
use intensity images or stereovision to estimate 3-D motion 
parameters. These techniques are not yet sufficiently robust 
to be used for highly sensitive real time systems. Recently, 
with the rapid progress of high-speed range camera 
technology, capturing what is referred to as 2.5-D images is 
becoming possible. These images, which provide precise 
measurements of geometry of the 3-D environment, can 
make motion estimation and object tracking much easier and 
more reliable. In general, there are two classes of motion 
estimation algorithms for range images. Class one is for 
rigid motion surfaces [1]-[8], and the other is for moving 
deformable surfaces [9], [10]. Class one can be further 
divided into two categories. The first is a feature-based 
algorithm [3], [4], whose performance depends on the 
detection of reliable range image features and the 
establishment of interframe correspondence among them.  
The other is a direct area-based algorithm [1], [2], [5]-[8], 
which is more straightforward than the feature-based 
algorithm. In our approach, which falls in this category, we 
are mainly concerned with rigid motion where the structure 
of moving images is based on a single beam laser scanner 
technology. In this technology a deflection mirror assembly 
scans a beam over the scene. This type of technique has 
been widely used for many tactical and industrial 

applications and uses different types of range measurement 
technologies. One example is the Time of Flight (Pulsed) 
laser range modules, which send short pulses that are 
reflected by surrounding objects. Note that with this 
technology, a three-dimensional scan of a scene is obtained 
by deflecting the laser beam in equal increments of angle in 
horizontal and vertical planes. A scanned scene can then be 
represented in terms of range ρ , horizontal angle θ , and 

elevation angle φ , which corresponds to a spherical (polar) 

coordinate system. 
By converting a range image from the spherical coordinate 
system to a so-called Cartesian Elevation Map (CEM), Horn 
and Harris [1] developed a recovery system for the six 
degrees of freedom of motion of a vehicle, which has been a 
challenging problem in autonomous navigation. In CEM the 
depth Z is expressed as a function of X and Y, which 
corresponds to displacements in the horizontal plane. This 
time varying CEM is used to estimate translational and 
rotational movements of rigid objects.   
Although the optimized solution offered by Horn and Harris 
has been very effective, it does not always produce very 
accurate estimation of 3-D motion displacements, which is 
crucial for highly sensitive robotic operations. Thus, here we 
present a recursive approach to enhance estimation 
accuracy. As will be described next, this iterative approach 
is based on minimizing the error between the new position 
of the object and its previous location, after being 
compensated using estimated motion displacements. In 
addition, since a set of 3-D points obtained in the CEM 
coordinate may not be placed regularly on a rectangular 
grid, we present a method that uses a non-rectangular grid to 
reconstruct the displaced frame. This scheme employs 
derivative filters together with transformation between the 
Cartesian coordinates and sensor-centered coordinates for 
image reconstruction. 
 

2. 3-D RIGID MOTION ESTIMATION 
Recovery of the six degrees of freedom of motion 
displacement can be best accomplished by using time 
varying CEM, as proposed by Horn and Harris [1]. Their 
algorithm is based on the assumption that most of the 
surface is smooth so that local tangent planes can be 
constructed. In addition, the motion between frames is 
smaller than the size of most features in the range image 
Furthermore, the environment is a single rigid assemblage 
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and only the motion of the sensor relative to the 
environment has to be recovered.  
A time varying CEM can be expressed as Z(X, Y, t); where t 
denotes time, Z is the depth, and X and Y are displacements 
in the horizontal and vertical plane, respectively. For a rigid 
motion scene, the motion can be described as instantaneous 
translational velocity and instantaneous angular velocity. 
For every 3-D point, an elevation rate constraint equation 
relating derivatives of X, Y, Z can be obtained as [1], 
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From (1) and (3),  
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where qZYr −−= , pZXs += , pYqXt −= . 

Let’s assume that there is a set of m pixels in the image and 
for each such pixel we define the following set of six 
dimensional vectors for the nth pixel, 
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From (4) the rate of change for elevation (Zt) at pixel n can 
be shown as,  
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Based on the above equation we can estimate the motion 
iteratively, where at each iteration the previous estimate is 
used in the process. Let’s assume that in this process two 
consecutive video frames (generated at a fixed frame rate) 
are used to measure the change of rate of elevation. After 
each iteration the estimated motion vectors are used to 
reconstruct the compensated first frame for the next 
iteration.  
From (5) we can show,     
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where γ  is the measurement of the displaced frame 

difference (DFD) between the second frame and the 
compensated first frame (i.e. the estimated second frame) 
using the estimated motion vectors [13]. 
For a cluster of m moving pels, after carrying out the 
minimization, the least-squares estimate of D is,                           
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In order to obtain the new position of each displaced pixel 
on a non-rectangular grid in CEM, we developed a 
combination of derivative filters [12] and transformation 
between the Cartesian coordinates and the sensor-centered 
coordinates in a non-rectangular grid coordinate.  
To use the range data on the non-rectangular sensor grid 
directly for motion estimation, a new version of the range 
flow constraint equation is derived in [12]. The three 
components of the motion vector for one point (i.e. on X, Y, 
Z directions) can be written as: 
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In order to reconstruct the first frame after each iteration in a 
non-rectangular grid, we perform motion compensation 
directly on the spherical (polar) coordinate. This requires the 
transformation between ( ρ , θ , φ ) and (X, Y, Z) each time 

the motion vector estimation is updated. The transformation 
from sensor-centered coordinates ( ρ , θ , φ ) to Cartesian 

coordinates (X, Y, Z) can be shown as, 
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Similarly, from (X, Y, Z) to ( ρ , θ , φ ). 
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Given the first frame
1F , and the estimated motion vector 

MV , the estimated second frame 
2F̂  will be:  
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where yx, , yx ′′,  are the image index.  For range data on the 

rectangular grid, we can directly obtain ),( yx ′′  as, 
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where ),(),1( yxXyxXX −+=Δ , ),()1,( yxYyxYY −+=Δ . 

However, since the 3-D range data in the X, Y, and Z 
coordinate system are not on the rectangular grid, we cannot 
directly incorporate the motion vector to reconstruct the 
motion compensated frame. At the same time, the 3-D 
points in the sensor centered coordinate ( ρ , θ , φ ) system 

has the property that θΔ  and φΔ  are constant, where 

),(),1( yxyx θθθ −+=Δ  and ),()1,( yxyx φφφ −+=Δ . 

Therefore, each time the motion vector is estimated in the X, 
Y, Z coordinates, motion compensation is performed on the 
spherical coordinate where, 
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Then we can obtain ),( yx ′′  as, 
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3. RESULTS 

In order to quantitatively analyze our proposed 3-D motion 
estimation algorithm we have synthetically generated 
sequences of moving range images. In particular, these 
moving images are produced in such a way that a 3-D object 
can be displaced in accordance with the predefined motion 
displacement parameters. These images can allow us to 
evaluate the accuracy of estimated motion vectors with 
reference to the actual displacement parameters. 
Moving range image sequences were constructed via 3-D 
OOGL (Object Oriented Graphics Library) files. OOGL is a 
3-D object data file in which an object is defined by 
vertices, lines and surfaces. Fig. 1 shows an OOGL file 
called as “igea”, which was selected here to generate a range 
video sequence for our simulation.  
RIF file is a range image format, which is based on the 
Cartesian coordinates (X, Y, Z components) and consists of 
the object points and the Mask map (indicates where there 
are object points). In this format frames with moving objects 
are constructed by first displacing the object in the OOGL 
file and then transforming it to the RIF format. In this way 
we can create a sequence of moving range images (frames) 
where the object in each frame can be displaced by a 
predefined 3-D motion vector. In order to assess the 
performance of the motion estimation, we deliberately 
corrupted the second range image with zero mean, additive 
Gaussian noise. Different levels of noise, as described by 
the standard deviation, are added to the range component, 
ρ , in the spherical coordinate (before transformation to the 

CEM coordinate). 
Now we present the simulation results of the proposed 
motion estimation technique in accordance with equation 
(8). From this equation we can observe that for i = 1 (first 
iteration) and for the initial estimate D0 = 0, (8) reduces to 
the Horn and Harris algorithm [1]. Therefore, any 
improvement after the first iteration is credited to the 
proposed recursive method over the Horn and Harris 
algorithm. Another factor affecting the performance of the 

estimation method is dealing with the non-rectangular grid 
typical of range images in the X, Y, and Z coordinate system. 
As described in Section II, we have developed a method 
which is a combination of the derivative filter and 
transformation between ( ρ , θ , φ ) and (X, Y, Z).  

We use two criteria as a measure of performance: Mean 
Square Error (MSE) and Motion Vector Error (MVE). The 
MSE between Frame 1 and Frame 2 is defined as, 
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In our experiments we set the maximum number of 
iterations to 16. However, if the MSE difference between 
successive iterations is less than a threshold (i.e., 0.1) and 
the current MSE larger than the previous one, the previous 
estimation will be selected and the iteration will be stopped.  
 

 
Fig 1. The OOGL files: “igea” 
 
We carried out these experiments under various test 
conditions. For example, we used different parameters to 
transform a 3-D image (see Fig. 1) from OOGL to RIF. 
Based on the 3-D test image shown in Fig. 1, we created a 
large number of range video sequences with different view 
angles and different translation and rotational motion.  
The results of our experiments are presented subjectively 
and objectively. In the subjective results we show a 
difference between the second frame and the estimated 
second frame. Note that the estimated second frame 
corresponds to the motion compensated first frame based on 
the estimated motion parameters (e.g., after each iteration). 
This frame difference, as shown by equation (6) in Section 
II, corresponds to the displaced frame difference (DFD). In 
the objective results, we show the MSE curve and the MVE 
curve for the recursive motion estimation algorithm. The 
results, which show two consecutive frames of “igea” 
image, are depicted in Fig. 2 and 3.  It can be clearly 
observed that the results of the first iteration, which 
correspond to the Horn and Harris algorithm, are very poor.  
This is mainly because the surfaces of some objects are not 
smooth enough and there are many surfaces that are not 
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always conjoined smoothly. However, after the first 
iteration, due to the proposed recursive motion estimation 
algorithm, the estimated motion parameters approach the 
actual motion parameters.  
In order to test the resistance of the motion estimation 
scheme to noise, we added a different level of synthetic 
noise (white Gaussian noise) on the second range image. We 
then averaged the results by running each test 20 times. The 
results are depicted in Fig. 4. We can see that the 
performance of the motion estimation drops as the noise 
level increases. Nevertheless, the recursive motion 
estimation continues to maintain its gain over the Horn and 
Harris algorithm.   
 Finally, we should point out that for every iteration the 
computational cost would be the same as with the Horn and 
Harris algorithm, except that additional processing would be 
required to achieve transformation between ( ρ , θ , φ ) and 

(X, Y, Z) after each iteration. 
 

 
Fig. 2. Subjective evaluations of the proposed motion estimation scheme 
for “igea”. (a) The first image; (b) The second image; (c) The estimated 
second image using the estimated motion parameters of final iteration; (d) 
The difference image between the original two images; (e) The difference 
image between the second image and the estimated second image (DFD) 
using the motion parameters of the first iteration (Horn and Harris 
algorithm); (f) The difference image between the second image and the 
estimated second image (DFD) using the motion parameters of the final 
iteration. 

 
Fig. 3. Objective evaluations of the proposed motion estimation scheme for 
“igea”. (a) MSE; (b) MVE. 
 

4. CONCLUSIONS 
In the realm of 3D measurements, high-resolution range 
moving images that can accurately perform object tracking 
and velocity estimation would be required for highly 
sensitive and critical operations. Thus, our main objective 
has been to improve motion estimation accuracy involving 
both rotational and translational movements. We have 
presented a recursive motion estimation technique that can 
take advantage of the in-depth resolution (range). We have 

shown that displacement of objects with complex 3-D 
motion in range images can be accurately estimated by 
using the proposed recursive approach. In addition, we 
presented a method of reconstructing a motion compensated 
frame in a non-rectangular grid structure typical of range 
images in the Cartesian coordinate system. 
 

 
Fig. 4 Objective comparison of different algorithms for “igea” with 
different level of noise. (a) MSE; (b) MVE. 
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