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Motivation for Transforms

�Why transform the data

{ To decorrelate the data so that fast scalar (rather than
slow vector) quantization can be used

{ To exploit better the characteristics of the human visual
system (HVS) by separating the data into vision-sensitive
parts and vision-insensitive parts

{ To compact most of the \energy" in a few coe�cients, so
that to discard most of the coe�cients and thus achieve
compression
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Desirable Transforms

� Desirable Properties of transforms

{ Data Decorrelation, exploitation of HVS, and energy com-
paction

{ Data-Independence (same transform for all data)

{ Speed

{ Separability (for fast transform of multidimensional data)

� Various transforms achieve those properties to various ex-
tents

{ Fourier Transform

{ Discrete Cosine Transform (DCT)

{ Other Fourier-like transforms: Haar, Walsh, Hadamard

{Wavelet transforms

� The Karhunen-Loeve Transform
{ Optimal w.r.t. data decorrelation and energy compaction

{ But it is data-dependent

{ And slow because the transform matrix has to be com-
puted every time

{ Therefore, KL is only of theoretical interest to data com-
pression
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Di�erent Perspectives of Transforms

� Statistical perspective

� Frequency perspective

� Vector space perspective

� End-use perspective (matrix formulation)
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Matrix Formulation of Transforms

� Simply stated, a transform is a matrix multiplication of the
input signal and the transform-matrix

� Each of the standard transforms mentioned earlier is de�ned
by an N �N square non-singular matrix AN

� Transform of a 1D discrete input signal (a column vector x
of N components) is the computation of

y = ANx

� Transform of an N�M image I is transform of each column
followed by transform of each row. In matrix form, transform
of image I is the computation of

J = ANIA
t
M

� The inverse transform is simply x = A�1
N y for 1D signals,

and I = A�1
N J(A�1

M )t for images
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Transform-Based Lossy Compression

� Compression of an image I :

1. Transform I , yielding J = ANIA
t
M

2. Scalar-quantize J , yielding J 0

3. Losslessly compress J 0, yielding a bit stream B

� Image reconstruction

1. Losslessly decompress B back to J 0

2. Dequantize J 0, yielding an approximation Ĵ of J

3. Inverse-transform Ĵ , yielding a reconstructed image

Î = A�1
N ĴA�1

M

t
:
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De�nition of The Matrices of
the Standard Transforms

� Except for the case of the KL transform, the characterizing
matrix AN of each of the standard transforms is independent
of the input, that is, AN is the same for all 1D signals and
images.

� In the following, the matrix AN of each transform will be
de�ned for arbitrary N , and then A2, A4 and A8 will be
shown
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The Matrix of the Fourier Transform

� The matrix AN = (akl) for the Fourier Transform:

akl =

vuuuut 1

N
e�

2�i
N kl; for k; l = 0; 1; : : : ; N � 1

� Remark: At
N = AN = A�1

N

A2 =
s
1
2

0
BB@ 1 1
1 �1

1
CCA

A4 =
1
2

0
BBBBBBBBBB@

1 1 1 1
1 �i �1 i
1 �1 1 �1
1 i �1 �i

1
CCCCCCCCCCA

Let a =
p
2
2 (1 + i) and a =

p
2
2 (1� i)

A8 =
s
1
8

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 a �i �a �1 �a i a
1 �i �1 i 1 �i �1 i
1 �a i a �1 a �i �a
1 �1 1 �1 1 �1 1 �1
1 �a �i a �1 a i �a
1 �i �1 �i 1 i �1 �i
1 a i �a �1 �a �i a

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA
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The Matrix of
the Discrete Cosine Transform (DCT)

� The matrix AN = (akl) for DCT:

a0l =

vuuuut 1

N
; for l = 0; 1; : : : ; N � 1

akl =

vuuuut 2

N
cos

(l + 1
2)k�

N
; for 1 � k � N�1; 0 � l � N�1

� Remark: A�1
N = At

N

A4 =
1
2

0
BBBBBBBBBBBB@

1 1 1 1s
1 +

p
2
2

s
1�

p
2
2 �

s
1�

p
2
2 �

s
1 +

p
2
2

1 �1 �1 1s
1�

p
2
2 �

s
1 +

p
2
2

s
1 +

p
2
2 �

s
1�

p
2
2

1
CCCCCCCCCCCCA
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The Matrix of the Hadamard Transform

� The matrix AN = (akl) for the Hadamard Transform is de-
�ned recursively:

{ A1 = (1)

{ AN = 1p
2

2
6664
AN

2

AN
2

AN
2

�AN
2

3
7775

� Remark: A�1
N = At

N = AN

A2 =
s
1
2

0
BB@ 1 1
1 �1

1
CCA A4 =

1
2

0
BBBBBBBBBB@

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1
CCCCCCCCCCA

A8 =
s
1
8

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1
1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1
1 1 �1 �1 �1 �1 1 1
1 �1 �1 1 �1 1 1 �1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA
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The Matrix of the Walsh Transform

� The matrix AN of the Walsh Transform is derived from the
Hadamard matrix by permuting the rows of the latter in a
certain way

� Remark: A�1
N = At

N = AN

A2 =
s
1
2

0
BB@ 1 1
1 �1

1
CCA A4 =

1
2

0
BBBBBBBBBB@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1
CCCCCCCCCCA

A8 =
s
1
8

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 1 �1 �1 1 1 �1 �1
1 1 �1 �1 �1 �1 1 1
1 �1 1 �1 1 �1 1 �1
1 �1 1 �1 �1 1 �1 1
1 �1 �1 1 1 �1 �1 1
1 �1 �1 1 �1 1 1 �1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA
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The Matrix of the Haar Transform

� The matrix AN = (akl) for the Haar Transform, where N =
2n:

{ a0l =
1p
N
for l = 0; 1; : : : ; N � 1

{ for k � 1, k = 2p + q, 0 � q � 2p � 1, 0 � p � n� 1

akl =

8>>>>>>><
>>>>>>>:

2
p�n
2 if q2n�p � l < (q + 1

2)2
n�p

�2p�n2 if (q + 1
2)2

n�p � l < (q + 1)2n�p

0 otherwise

� Remark: A�1
N = At

N

A2 =
s
1
2

0
BB@ 1 1
1 �1

1
CCA A4 =

1
2

0
BBBBBBBBBBB@

1 1 1 1
1 1 �1 �1p
2 �p2 0 0

0 0
p
2 �p2

1
CCCCCCCCCCCA

A8 =
s
1
8

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1p
2
p
2 �p2 �p2 0 0 0 0

0 0 0 0
p
2
p
2 �p2 �p2

2 �2 0 0 0 0 0 0
0 0 2 �2 0 0 0 0
0 0 0 0 2 �2 0 0
0 0 0 0 0 0 2 �2

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Vector Space Perspective

� Analog signals are treated as an in�nite-dimensional func-
tional vector space

� Finite Discrete are signals treated as �nite-dimensional vec-
tor spaces

� In either case, the vector space has a basis fek j k = 0; 1; :::g

� A transform of a signal x is a linear decomposition of x along
the basis fekg:
{ x = P

k ykek, where the fykg are real/complex numbers

{ Transform: x �! (yk)k

{ (yk)k is a representation of x

� Compression-related desirable properties of a vector-space
basis

{ Correspondence with the human visual system

{ Speci�cally, only a very small number of basis vectors are
relevant to (i.e., visible by) the HVS, while the majority
of the basis vectors are invisible to the HVS

{ Uncorrelated decomposition-coe�cients (yk)k

13



Relationship between the Vector Basis
and the Matrix Formulation of Transforms

� Consider �nite 1D discrete signals of N components

{ They form an N -dimensional vector space RN

{ Any basis consists of N linearly independent column vec-
tors e0; e1; : : : ; eN�1

{ For any signal x = (x0 x1 : : : xN�1)t, x = PN�1
k=0 ykek

{ That is,

0
BBBBBBBBBB@

x0
x1
� � �
xN�1

1
CCCCCCCCCCA
= (e0 e1 : : : eN�1)

0
BBBBBBBBBB@

y0
y1
� � �
yN�1

1
CCCCCCCCCCA

{ Equivalently, y = Ax, where the columns of A�1 are the
basis column vectors e0; e1; : : : ; eN�1
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� Consider now N �M images

{ They form an NM -dimensional vector space RN�M

{ Any basis consists ofN�M matrices fEklg of dimensions
N �M

{ Following the same analysis as above, a transform
I �! J = ANIA

t
M corresponds to basis

Ekl = (column k of A�1
N ):(column l of A�1

M )t = ek:e
t
l

for k = 0; 1; :::; N � 1 and l = 0; 1; :::;M � 1

{ I = P
k;l JklEkl

� Remark: For analog signals, the vector space is in�nite-
dimensional, and its basis is the in�nite set of sine and cosine
waves, to be addressed later

15



Visualization of DCT Basis Images
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Fourier Transform

� Consider a function x(t) that is either

{ of �nite support [0; T ], or

{ periodic of period T

� Assume x(t) to be square-integrable over [0; T ]

� Fourier series of x(t) is:
1X
k=0

ak cos
2�

T
kt +

1X
k=0

bk sin
2�

T
kt; or

� In (more elegant) complex form:

1X
k=�1

yke
2�
T ikt; where yk =

1

T

Z T
0 x(t)e�

2�
T iktdt

� Fourier Transform: x(t) �! (yk)k
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� Theorem: For all natural signals,

{ x(t+)+x(t�)
2 = P1

k=�1 yke
2�
T ikt

{ If x is continuous at t, x(t) = P1
k=�1 yke

2�
T ikt

� Therefore, x(t) is largely representable by (yk)k

� Theorem: yk �! 0 as jkj �! 1

� The representation x(t) = P1
k=�1 yke

2�
T ikt is periodic of pe-

riod T . Thus, even if x(t) is de�ned over [0; T ] only, the
Fourier series \periodizes" x(t)
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Connection with The Human Visual System

� e2�
T ikt is periodic of period T

k
; thus, its frequency is k

T

� The higher k, the higher the frequency

� In x(t) = P1
k=�1 yke

2�
T ikt, yk is the k-th frequency content of

x(t)

� Experiments have shown that

{ suppressing a yk (along with y�k) for any high frequency
k causes HARDLY VISIBLE or NO VISIBLE change to
x(t)

{ suppressing a yk (along with y�k) for some low frequency
k causes VISIBLE changes to x(t)

� Thus, the HVS is sensitive to low-frequency data but insen-
sitive to high-frequency data
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Connection to Compression
(\First Cut")

� Facts
{ x(t) = P1

k=�1 yke
2�
T ikt

{ yk �! 0 as jkj �! 1

� x̂(t) = Pr
k=�r yke

2�
T ikt is a good mathematical and visual ap-

proximation of x(t)

� The faster the decay of yk, the smaller r can be

� Thus, (yk)jkj�r is a very small representation of x (x̂ to be
precise), leading to high compression
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Treatment of Discrete Signals
(Discrete Fourier Transform)

� Sample N values (xl) of x(t) at N points l T
N
, that is, xl =

x(l T
N
) for l = 0; 1; :::; N � 1.

� xl = x(l T
N
) = P

k yke
2�
T ikl TN = P

k yke
2�
N ikl

� Since (xl) is discrete and �nite, there is no need to keep an
in�nity of yk's; rather, y0; y1; :::; yN�1 are su�cient. That is,

xl =
N�1X
k=0

yke
2�
N ikl; l = 0; 1; :::; N � 1

yk =
N�1X
l=0

xke
2�
N ikl; k = 0; 1; :::; N � 1

� DFT: (xl)l �! (yk)k

� Put in matrix form: y = ANx, where AN = (e
2�
N ikl)kl

� Again, for large k, yk can be suppressed is broadly quantized
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Why Use DCT rather than DFT
(Boundary Problems of the Fourier Transforms)

� Discontinuities at the boundaries cause large high-frequency
contents

� Eliminating those frequency contents cause boundary arti-
facts (known as Gibbs phenomenon, ringing, echoing, etc.)
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� Consider the function

x(t) =

8>>>>>><
>>>>>>:

t
T

if 0 � t � T
2

(2�� 1) t
T
� � + 1 if T

2 � t � T
0 otherwise

� Its Fourier series is:

x(t) =
� + 1

4
+

X
k 6=0

2
664
(1� �)

�
(�1)k � 1

�

2(�k)2
+

�

2�k
i

3
775 e

2�i
T kt
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� Special case � = 0:

x(t) =
1

4
+

X
k 6=0

(�1)k � 1

2(�k)2
e
2�i
T kt

� Special case � = 1:

x(t) =
1

2
+

X
k 6=0

i

2�k
e
2�i
T kt
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Relation of DCT to FFT

� Let (xl) be an original signal, and (yk) its DCT transform,
l = 0; 1; :::; N � 1

� Shu�e x to become almost symmetric; that is, create a new
signal (x0l) by taking the even-indexed terms followed by the
reverse of the odd-indexed terms:

{ x0l = x2l and x0N�l�1 = x2l+1, for 0 � l � N=2� 1

� y'=DFT(x');

� y0 =
s
1
N
Real(x00),

and yk =
s
2
N
Real(e

��k
2N x0k), k = 1; 2; :::; N � 1
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Quantization in DCT-based Compression
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DCT vs. KL

� For most natural signals, the KL basis and the DCT basis
are almost identical

� Therefore, DCT is near optimal (in decorrelation, energy
compaction, and rme distortion) because KL is optimal

� Unlike KL, DCT is not signal-dependent

� Hence the popularity of DCT
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