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Motivation

� Need for low bitrate

{ Less than 0.2 bit per pixel for video

� Inadequacy of lossless compression

{ Achievable compression ratio hardly above 2

{ Achievable bitrate hardly below 4 bits per pixel

� Presence of visual redundancy that can be greatly exploited
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General Scheme of Lossy Compression

� Approach

1. Transform: Convert the data to the frequency domain

2. Quantize: Under-represent the high frequencies

3. Losslessly compress the quantized data

� Properties of transforms

{ Decorrelation of data

{ Separation of data into

� vision-sensitive data (low-frequency data)

� vision-insensitive data (high-frequency data)

� Various transforms achieve both properties

{ Fourier Transform

{ Discrete Cosine Transform (DCT)

{ Other Fourier-like transforms: Haar, Walsh, Hadamard

{Wavelet transforms
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� Properties of quantization

{ Progressive under-representation of higher-frequency data

{ Conversion of visual redundancy to symbol-level redun-
dancy that leads to high compression ratios

{ Minimum and controlled distortion: more errors in less
sensitive regions

� Examples of quantizers

{ Uniform scalar quantization

{ Non-uniform scalar quantization

{ Vector quantization (VQ)
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Illustration of the E�ects of Transforms
and the Need for Quantization
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Scalar Quantization

� De�nition of Quantization/Dequantization:

{ A k-level quantizer is typically characterized by k + 1
decision levels d0; d1; : : : ; dk, and by k reconstruction

levels r0; r1; : : : rk�1.

{ The di's divide the range of data under quantization into
k consecutive intervals [d0; d1) [d1; d2) : : : [dk�1; dk).

{ Each ri is in [di; di+1), and can be viewed as the \centroid"
of its interval.

{ Quantizing a number ameans locating the interval [di; di+1)
that contains a, and replacing a by index i.

{ Dequantization (in reconstruction) is the process of re-
placing each index i by the value ri. This approximates
every original number that was in interval [di; di+1) by the
centroid ri.

� A few quantizers assume that d0 = �1 and dk = 1. But
in the majority of quantizers d0 and dk are �nite numbers
representing the minimum and maximum value of the data
being quantized.
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Types of Scalar Quantizers

� Uniform Quantizers

{ All the decision intervals are of equal size � = dk�d0
k

� di = d0 + i�

{ The reconstruction levels ri's are the centers of the inter-
vals

� ri =
di+di+1

2

� Non-Uniform Quantizers

{ Either the decision intervals are not of equal size

{ Or the reconstruction levels are not the centers of their
intervals

� Semi-Uniform Quantizers

{ Equal intervals

{ The reconstruction levels are not necessarily the interval
centers
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Illustration of Quantizers

8



Optimal Non-Uniform Quantizers
(Max-Lloyd Quantizers)

� Assume the data under quantization follows a probability
distribution p(x)

� The mean-square error (MSE) is

E =
k�1X
l=0

Z dl+1
dl

(x� rl)
2p(x)dx

� To minimize the MSE, compute the partial derivatives of E
with respect to each di and each ri, and set them to 0

� Notation: The partial derivative of E with respect to a vari-
able u is denoted Eu
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Optimal Non-Uniform Quantizers (Cont.)

� Eri = 2
Rdi+1
di

(ri�x)p(x)dx = 2[ri
Rdi+1
di

p(x)dx�
Rdi+1
di

xp(x)dx]

� Eri = 0 implies

ri =
Rdi+1
di

xp(x)dx
Rdi+1
di

p(x)dx
; for all i = 0; 1; : : : k � 1

� This means that the optimal ri is the probabilistic centroid
of its interval

� Edi = �(ri � di)
2p(di) + (ri�1 � di)

2p(di)

� Edi = 0 implies that (ri�1 � di)
2 = (ri � di)

2p(di), that is,
di � ri�1 = ri � di. Hence,

di =
ri�1 + ri

2
; for all i = 1; 2; : : : ; k � 1

� Remark: If p(x) is not known theoretically, treat ri as the
statistical centroid of its interval, and di still as

ri�1+ri
2
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Max-Lloyd Quantizers (Cont.)

� The k centroid equations for the ri's, and the k� 1 decision
level equations for the di's form 2k � 1 equations of 2k � 1
unknowns

� Unfortunately, these equations are non-linear, and thus hard
to solve directly.

� The Max-Lloyd technique is an iterative algorithm for deriv-
ing very accurate approximations of di's and ri's

� Max-Lloyd Algorithm (for designing an optimal k-level quan-
tizer)

1. Start with arbitrary initial estimate for the di's

2. Repeat

{ For all i, compute ri =
R di+1
di

xp(x)dx

R di+1
di

p(x)dx

{ For all i, compute di ==
ri�1+ri

2

Until (the error between successive estimates of the di's
are less than a set tolerance)

11



Optimal Semi-Uniform Quantizers

� The decision levels di's are known constants (di = d0 + i�)

� The reconstruction levels ri are the probabilistic (or statisti-
cal) centroids of their intervals [di; di+1).
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Uniform vs. Non-Uniform vs. Semi-Uniform Quantizers

Advantages Disadvantages

Uniform

Quan-

tizers

� Very simple

� Fast to de-/quantize

� Stores the di's & ri's

� Leads to good symbol re-

dundancy

� The quality of recon-

structed data is not

optimal

Non-

Uniform

Quan-

tizers

� The quality of recon-

structed data is optimal

� Costly to compute the di's

& ri's

� Costly to de-/quantize

� Stores the di's & ri's

Semi-

Uniform

Quan-

tizers

� Trivial di's and fast to com-

pute ri's

� Fast to de-/quantize

� No storage of the di's

� good symbol redundancy

� The quality is very good

� The quality of recon-

structed data is less than

optimal

� Still requires the storage of

the ri's
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Vector Quantization

� Scalar quantization is insensitive to inter-pixel correlations

� Scalar quantization not only fails to exploit correlations, it
also destroys them, thus hurting the image quality

� Therefore, quantizing correlated data requires alternative quan-
tization techniques that exploit and largely preserve correla-
tions

� Vector quantization (VQ) is such a technique

� VQ is a generalization of scalar quantization: It quantizes
vectors (contiguous blocks) of pixels rather than individual
pixels

� VQ can be used as a standalone compression technique op-
erating directly on the original data (images or sounds)

� VQ can also be used as the quantization stage of a gen-
eral lossy compression scheme, especially where the trans-
form stage does not decorrelate completely, such as in certain
applications of wavelet transforms
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The Main Technique of VQ

� Build a dictionary or \visual alphabet", called codebook, of
codevectors. Each codevector is a (1D or 2D) block of n
pixels

� Coding

1. Partition the input into blocks (vectors) of n pixels

2. For each vector v, search the codebook for the best match-
ing codevector v̂, and code v by the index of v̂ in the
codebook

3. Losslessly compress the indices

� Decoding (A simple table lookup)

1. Losslessly decompress the indices

2. Replace each index i by codevector i of the codebook

� The codebook has to be stored/transmitted

� The codebook can be generated on an image-per-image basis
or a class-per-class basis
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VQ Issues

� Codebook size (# of codevectors) Nc | how big or small?

� Codevector size n | how big or small?

� Codebook construction | what codevectors to include?

� Codebook structure | for faster best-match searches

� Global or local codebooks | class- or image-oriented VQ?
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Sizes of Codebooks and Codevectors
(Tradeo�s)

� A large codebook size Nc allows for representing more fea-
tures, leading to better reconstruction quality

� But a large Nc causes more storage and/or transmission

� A small Nc has the opposite e�ects

� Typical values for Nc: 2
7; 28; 29; 210; 211

� A larger codevector size n exploits inter-pixel correlations
better

� But n should not be larger than the extent of spatial corre-
lations
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Codevector Size Optimization

� Optimal codevector size n for minimum bitrate and constant
Nc

{ Consider N � N images with r bits per pixel, and let
n = p� p be the block size

{ Size S of the compressed image: N2

p2
logNc + p2rNc bits

{ The bitrate R = S
N2 =

logNc

p2
+ rNc

N2 p
2

{ For minimum bitrate R, the derivative dR
dp

= 0

{ Since dR
dp

= �2 logNc

p3
+ 2rNc

N2 p, we have

p =

2
664
N 2 logNc

rNc

3
775

1
4

� Concrete �gures of optimal n for N = 512

Nc 26 27 28 29 210 211
p 7.4 6.5 5.6 4.9 4.2 3.6
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Codevector Size Optimization (Cont.)

� Therefore, optimal 2D codevector sizes are 4 � 4 and 8 � 8
for powers-of-2 sizes

� Interestingly, statistical studies on natural images have shown
that there is little correlation between pixels more than 8 po-
sitions apart, and in fact, most of the correlations ar among
pixels that are within 4 positions away.

� Therefore, 4�4 and 8�8 codewords are excellent choices from
both the bitrate standpoint and the correlation-exploitation
standpoint
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Construction of Codebooks
(The Linde-Buzo-Gray Algorithm)

� Main idea

1. Start with an initial codebook of Nc vectors;

2. Form Nc classes from a set of training vectors: put each
training vector v in Class i if the i-th initial codeword is
the closest match to v;

Note: The training set is the set of all the blocks of the im-
age being compressed. For global codebooks, the training
set is a the set of all the blocks of a representative subset
of images selected from the class of images of the applica-
tion.

3. Repeatedly restructure the classes by computing the new
centroids of the recent classes, and then putting each
training v vector in the class of v's closest new centroid;

4. Stop when the total distortions (di�erences between the
training vectors and their centroids) ceases to change much;

5. Take the most recent centroids as the codebook.
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The Linde-Buzo-Gray (LBG) Algorithm (Cont.)

� The algorithm in detail

1. Start with a set of training vectors and an initial code

book X̂
(1)
1 , X̂

(1)
2 , ..., X̂

(1)
Nc
. Initialize the iteration index l

to 1 and the initial distortion D(0) to 1.

2. For each training vector v, �nd the closest X̂
(l)
i :

d(v; X̂
(l)
i ) = min1�k�Nc

d(v; X̂
(l)
k );

where d(v; w) is the (Eucledian or MSE) distance between
the vectors v and w.
Put v in class i.

3. Compute the new total distortion

D(l) =
NcX
i=1

X
v2Class i

d(v; X̂
(l)
i ):

If jD
(l�1)�D(l)

D(l�1) j �TOLERANCE, the convergence is reached;

stop and take the most recent X̂
(l)
1 , X̂

(l)
2 ,..., X̂

(l)
Nc

to be the
codebook.
Else, goto step 4.

4. Compute the new class centroids (vector means):

l := l + 1; and for all i, X̂
(l)
i :=

P
v2Class i v

size of Class i
.

Goto 2.
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Initial Codebook

� Three methods for constructing an initial codebook

{ The random method

{ Pairwise Nearest Neighbor Clustering

{ Splitting

� The random method:

{ Choose randomly Nc vectors from the training set

� Pairwise Nearest Neighbor Clustering:

1. Form each training vector into a cluster

2. Repeat the following until the number of clusters becomes
Nc: merge the 2 clusters whose centroids are the closest
to one another, and recompute their new centroid

3. Take the centroids of the Nc clusters as the initial code-
book
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� Splitting

1. Compute the centroid X1 of the training set

2. Perturb X1 to get X2, (e.g., X2 = :99 �X1)

3. Apply LBG on the current initial codebook to get an op-
timum codebook

4. Perturb each codevector to double the size of the code-
book

5. Repeat step 3 and 4 until the number of codevectors
reaches Nc

6. In the end, theNc codevectors are the whole desired code-
book

23



Codebook Structure
(m-ary Trees)

� Tree design and construction

1. Start with codebook as the leaves

2. Repeat until you construct the root

{ cluster all the nodes of the current level into m-node
clusters

{ create a parent node for each cluster of m nodes

� Searching for a best match of a vector v in the tree

{ Search down the tree, always following the branch that
incurs the least MSE

{ The search time is logarithmic (rather than linear) in the
codebook size

� Re�ned Trees

{ Tapered trees: The number of children per node increases
as one moves down the tree

{ Pruned Tress: Eliminate the codevectors that contribute
little to distortion reduction
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Advanced VQ

� Prediction/Residual VQ

{ Predict vectors

{ compute the residual vectors,

{ VQ-Code the residual vectors

� Mean/Residual VQ (M/R VQ)

{ Compute the mean of each vector and subtract it from
the vector

{ VQ-code the residual vectors

{ Code the means using DPCM and scalar quantization

{ Remark: Once the means are subtracted from the vectors,
many vectors become very similar, thus requiring fewer
codevectors to represent them

� Interpolation/residual VQ (I/R VQ)

{ subsample the image by choosing every l-th pixel

{ code the subsampled image using scalar quantization

{ Upsample the image using bilinear interpolation

{ VQ-code the residual (original-upsampled) image

{ remark: residuals have fewer variations, leading to smaller
codebooks
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� Gain/Shape VQ (G/S VQ)

{ Normalize all vectors to have unit gain (unit variance)

{ Code the gains using scalar quantization

{ VQ-code the normalized vectors
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